Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGKMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
51
52 if( verboseLevel > 1 )
53 {
54 const G4Material *targetMaterial = aTrack.GetMaterial();
55 G4cout << "G4RPGKMinusInelastic::ApplyYourself called" << G4endl;
56 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
57 G4cout << "target material = " << targetMaterial->GetName() << ", ";
58 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
59 << G4endl;
60 }
61
62 G4ReactionProduct currentParticle(originalIncident->GetDefinition() );
63 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
64 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
65
66 // Fermi motion and evaporation
67 // As of Geant3, the Fermi energy calculation had not been Done
68
69 G4double ek = originalIncident->GetKineticEnergy();
70 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
71
72 G4double tkin = targetNucleus.Cinema( ek );
73 ek += tkin;
74 currentParticle.SetKineticEnergy( ek );
75 G4double et = ek + amas;
76 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
77 G4double pp = currentParticle.GetMomentum().mag();
78 if( pp > 0.0 )
79 {
80 G4ThreeVector momentum = currentParticle.GetMomentum();
81 currentParticle.SetMomentum( momentum * (p/pp) );
82 }
83
84 // calculate black track energies
85
86 tkin = targetNucleus.EvaporationEffects( ek );
87 ek -= tkin;
88 currentParticle.SetKineticEnergy( ek );
89 et = ek + amas;
90 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91 pp = currentParticle.GetMomentum().mag();
92 if( pp > 0.0 )
93 {
94 G4ThreeVector momentum = currentParticle.GetMomentum();
95 currentParticle.SetMomentum( momentum * (p/pp) );
96 }
97
98 G4ReactionProduct modifiedOriginal = currentParticle;
99
100 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
101 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
102 G4bool incidentHasChanged = false;
103 G4bool targetHasChanged = false;
104 G4bool quasiElastic = false;
105 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
106 G4int vecLen = 0;
107 vec.Initialize( 0 );
108
109 const G4double cutOff = 0.1*MeV;
110 if( currentParticle.GetKineticEnergy() > cutOff )
111 Cascade( vec, vecLen,
112 originalIncident, currentParticle, targetParticle,
113 incidentHasChanged, targetHasChanged, quasiElastic );
114
115 CalculateMomenta( vec, vecLen,
116 originalIncident, originalTarget, modifiedOriginal,
117 targetNucleus, currentParticle, targetParticle,
118 incidentHasChanged, targetHasChanged, quasiElastic );
119
120 SetUpChange( vec, vecLen,
121 currentParticle, targetParticle,
122 incidentHasChanged );
123
124 delete originalTarget;
125 return &theParticleChange;
126}
127
128
129void G4RPGKMinusInelastic::Cascade(
131 G4int& vecLen,
132 const G4HadProjectile *originalIncident,
133 G4ReactionProduct &currentParticle,
134 G4ReactionProduct &targetParticle,
135 G4bool &incidentHasChanged,
136 G4bool &targetHasChanged,
137 G4bool &quasiElastic )
138{
139 // Derived from H. Fesefeldt's original FORTRAN code CASKM
140 //
141 // K- undergoes interaction with nucleon within a nucleus. Check if it is
142 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
143 // occurs and input particle is degraded in energy. No other particles are produced.
144 // If reaction is possible, find the correct number of pions/protons/neutrons
145 // produced using an interpolation to multiplicity data. Replace some pions or
146 // protons/neutrons by kaons or strange baryons according to the average
147 // multiplicity per Inelastic reaction.
148 //
149 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
150 const G4double etOriginal = originalIncident->GetTotalEnergy();
151 const G4double pOriginal = originalIncident->GetTotalMomentum();
152 const G4double targetMass = targetParticle.GetMass();
153 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
154 targetMass*targetMass +
155 2.0*targetMass*etOriginal );
156 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
157
158 static G4ThreadLocal G4bool first = true;
159 const G4int numMul = 1200;
160 const G4int numSec = 60;
161 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
162 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
163 // np = number of pi+, nneg = number of pi-, nz = number of pi0
164 G4int nt(0), np(0), nneg(0), nz(0);
165 const G4double c = 1.25;
166 const G4double b[] = { 0.70, 0.70 };
167 if( first ) // compute normalization constants, this will only be Done once
168 {
169 first = false;
170 G4int i;
171 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
172 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
173 G4int counter = -1;
174 for( np=0; np<(numSec/3); ++np )
175 {
176 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
177 {
178 for( nz=0; nz<numSec/3; ++nz )
179 {
180 if( ++counter < numMul )
181 {
182 nt = np+nneg+nz;
183 if( (nt>0) && (nt<=numSec) )
184 {
185 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
186 protnorm[nt-1] += protmul[counter];
187 }
188 }
189 }
190 }
191 }
192 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
193 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
194 counter = -1;
195 for( np=0; np<numSec/3; ++np )
196 {
197 for( nneg=np; nneg<=(np+2); ++nneg )
198 {
199 for( nz=0; nz<numSec/3; ++nz )
200 {
201 if( ++counter < numMul )
202 {
203 nt = np+nneg+nz;
204 if( (nt>0) && (nt<=numSec) )
205 {
206 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
207 neutnorm[nt-1] += neutmul[counter];
208 }
209 }
210 }
211 }
212 }
213 for( i=0; i<numSec; ++i )
214 {
215 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
216 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
217 }
218 } // end of initialization
219
220 const G4double expxu = 82.; // upper bound for arg. of exp
221 const G4double expxl = -expxu; // lower bound for arg. of exp
234 const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
235 G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
236 if( (pOriginal <= 2.0*GeV) && (G4UniformRand() < cech[iplab]) )
237 {
238 np = nneg = nz = nt = 0;
239 iplab = G4int(std::min( 19.0, pOriginal/GeV*10.0 ));
240 const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
241 0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
242 if( G4UniformRand() <= cnk0[iplab] )
243 {
244 quasiElastic = true;
245 if( targetParticle.GetDefinition() == aProton )
246 {
247 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
248 incidentHasChanged = true;
249 targetParticle.SetDefinitionAndUpdateE( aNeutron );
250 targetHasChanged = true;
251 }
252 }
253 else // random number > cnk0[iplab]
254 {
255 G4double ran = G4UniformRand();
256 if( ran < 0.25 ) // k- p --> pi- s+
257 {
258 if( targetParticle.GetDefinition() == aProton )
259 {
260 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
261 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
262 incidentHasChanged = true;
263 targetHasChanged = true;
264 }
265 }
266 else if( ran < 0.50 ) // k- p --> pi0 s0 or k- n --> pi- s0
267 {
268 if( targetParticle.GetDefinition() == aNeutron )
269 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
270 else
271 currentParticle.SetDefinitionAndUpdateE( aPiZero );
272 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
273 incidentHasChanged = true;
274 targetHasChanged = true;
275 }
276 else if( ran < 0.75 ) // k- p --> pi+ s- or k- n --> pi0 s-
277 {
278 if( targetParticle.GetDefinition() == aNeutron )
279 currentParticle.SetDefinitionAndUpdateE( aPiZero );
280 else
281 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
282 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
283 incidentHasChanged = true;
284 targetHasChanged = true;
285 }
286 else // k- p --> pi0 L or k- n --> pi- L
287 {
288 if( targetParticle.GetDefinition() == aNeutron )
289 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
290 else
291 currentParticle.SetDefinitionAndUpdateE( aPiZero );
292 targetParticle.SetDefinitionAndUpdateE( aLambda );
293 incidentHasChanged = true;
294 targetHasChanged = true;
295 }
296 }
297 }
298 else // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
299 {
300 if( availableEnergy < aPiPlus->GetPDGMass() )
301 { // not energetically possible to produce pion(s)
302 quasiElastic = true;
303 return;
304 }
305 G4double n, anpn;
306 GetNormalizationConstant( availableEnergy, n, anpn );
307 G4double ran = G4UniformRand();
308 G4double dum, test, excs = 0.0;
309 if( targetParticle.GetDefinition() == aProton )
310 {
311 G4int counter = -1;
312 for( np=0; np<numSec/3 && ran>=excs; ++np )
313 {
314 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
315 {
316 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
317 {
318 if( ++counter < numMul )
319 {
320 nt = np+nneg+nz;
321 if( nt > 0 )
322 {
323 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
324 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
325 if( std::fabs(dum) < 1.0 )
326 {
327 if( test >= 1.0e-10 )excs += dum*test;
328 }
329 else
330 excs += dum*test;
331 }
332 }
333 }
334 }
335 }
336 if( ran >= excs ) // 3 previous loops continued to the end
337 {
338 quasiElastic = true;
339 return;
340 }
341 np--; nneg--; nz--;
342 if( np == nneg )
343 {
344 if( G4UniformRand() >= 0.75 )
345 {
346 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
347 targetParticle.SetDefinitionAndUpdateE( aNeutron );
348 incidentHasChanged = true;
349 targetHasChanged = true;
350 }
351 }
352 else if( np == nneg+1 )
353 {
354 targetParticle.SetDefinitionAndUpdateE( aNeutron );
355 targetHasChanged = true;
356 }
357 else
358 {
359 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
360 incidentHasChanged = true;
361 }
362 }
363 else // target must be a neutron
364 {
365 G4int counter = -1;
366 for( np=0; np<numSec/3 && ran>=excs; ++np )
367 {
368 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
369 {
370 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
371 {
372 if( ++counter < numMul )
373 {
374 nt = np+nneg+nz;
375 if( (nt>=1) && (nt<=numSec) )
376 {
377 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
378 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
379 if( std::fabs(dum) < 1.0 )
380 {
381 if( test >= 1.0e-10 )excs += dum*test;
382 }
383 else
384 excs += dum*test;
385 }
386 }
387 }
388 }
389 }
390 if( ran >= excs ) // 3 previous loops continued to the end
391 {
392 quasiElastic = true;
393 return;
394 }
395 np--; nneg--; nz--;
396 if( np == nneg-1 )
397 {
398 if( G4UniformRand() < 0.5 )
399 {
400 targetParticle.SetDefinitionAndUpdateE( aProton );
401 targetHasChanged = true;
402 }
403 else
404 {
405 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
406 incidentHasChanged = true;
407 }
408 }
409 else if( np != nneg )
410 {
411 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
412 incidentHasChanged = true;
413 }
414 }
415 if( G4UniformRand() >= 0.5 )
416 {
417 if( (currentParticle.GetDefinition() == aKaonMinus &&
418 targetParticle.GetDefinition() == aNeutron ) ||
419 (currentParticle.GetDefinition() == aKaonZL &&
420 targetParticle.GetDefinition() == aProton ) )
421 {
422 ran = G4UniformRand();
423 if( ran < 0.68 )
424 {
425 if( targetParticle.GetDefinition() == aProton )
426 {
427 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
428 targetParticle.SetDefinitionAndUpdateE( aLambda );
429 incidentHasChanged = true;
430 targetHasChanged = true;
431 }
432 else
433 {
434 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
435 targetParticle.SetDefinitionAndUpdateE( aLambda );
436 incidentHasChanged = true;
437 targetHasChanged = true;
438 }
439 }
440 else if( ran < 0.84 )
441 {
442 if( targetParticle.GetDefinition() == aProton )
443 {
444 currentParticle.SetDefinitionAndUpdateE( aPiZero );
445 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
446 incidentHasChanged = true;
447 targetHasChanged = true;
448 }
449 else
450 {
451 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
452 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
453 incidentHasChanged = true;
454 targetHasChanged = true;
455 }
456 }
457 else
458 {
459 if( targetParticle.GetDefinition() == aProton )
460 {
461 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
462 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
463 incidentHasChanged = true;
464 targetHasChanged = true;
465 }
466 else
467 {
468 currentParticle.SetDefinitionAndUpdateE( aPiZero );
469 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
470 incidentHasChanged = true;
471 targetHasChanged = true;
472 }
473 }
474 }
475 else // ( current != aKaonMinus || target != aNeutron ) &&
476 // ( current != aKaonZL || target != aProton )
477 {
478 ran = G4UniformRand();
479 if( ran < 0.67 )
480 {
481 currentParticle.SetDefinitionAndUpdateE( aPiZero );
482 targetParticle.SetDefinitionAndUpdateE( aLambda );
483 incidentHasChanged = true;
484 targetHasChanged = true;
485 }
486 else if( ran < 0.78 )
487 {
488 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
489 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
490 incidentHasChanged = true;
491 targetHasChanged = true;
492 }
493 else if( ran < 0.89 )
494 {
495 currentParticle.SetDefinitionAndUpdateE( aPiZero );
496 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
497 incidentHasChanged = true;
498 targetHasChanged = true;
499 }
500 else
501 {
502 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
503 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
504 incidentHasChanged = true;
505 targetHasChanged = true;
506 }
507 }
508 }
509 }
510
511 if (currentParticle.GetDefinition() == aKaonZL) {
512 if (G4UniformRand() >= 0.5) {
513 currentParticle.SetDefinitionAndUpdateE(aKaonZS);
514 incidentHasChanged = true;
515 }
516 }
517
518 if (targetParticle.GetDefinition() == aKaonZL) {
519 if (G4UniformRand() >= 0.5) {
520 targetParticle.SetDefinitionAndUpdateE(aKaonZS);
521 targetHasChanged = true;
522 }
523 }
524
525 SetUpPions(np, nneg, nz, vec, vecLen);
526 return;
527}
528
529 /* end of file */
530
531
532
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4PionZero * PionZero()
Definition: G4PionZero.cc:107
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:107
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:101
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77