Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4eSingleCoulombScatteringModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4eSingleCoulombScatteringModel.cc
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31// File name: G4eSingleCoulombScatteringModel
32//
33// Author: Cristina Consolandi
34//
35// Creation date: 20.10.2012
36//
37// Class Description:
38// Single Scattering model for electron-nuclei interaction.
39// Suitable for high energy electrons and low scattering angles.
40//
41//
42// Reference:
43// M.J. Boschini et al. "Non Ionizing Energy Loss induced by Electrons
44// in the Space Environment" Proc. of the 13th International Conference
45// on Particle Physics and Advanced Technology
46//
47// (13th ICPPAT, Como 3-7/10/2011), World Scientific (Singapore).
48// Available at: http://arxiv.org/abs/1111.4042v4
49//
50//
51// -------------------------------------------------------------------
52//
53//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
54
55
58#include "G4SystemOfUnits.hh"
59#include "Randomize.hh"
61#include "G4Proton.hh"
63#include "G4NucleiProperties.hh"
64#include "G4NistManager.hh"
65#include "G4ParticleTable.hh"
66#include "G4IonTable.hh"
67
68#include "G4UnitsTable.hh"
69#include "G4EmParameters.hh"
70
71//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
72
73using namespace std;
74
76 : G4VEmModel(nam),
77 cosThetaMin(1.0)
78{
79 fNistManager = G4NistManager::Instance();
81 fParticleChange = nullptr;
82
83 pCuts=nullptr;
84 currentMaterial = nullptr;
85 currentElement = nullptr;
86 currentCouple = nullptr;
87
88 lowEnergyLimit = 0*keV;
89 recoilThreshold = 0.*eV;
90 XSectionModel = 1;
91 FormFactor = 0;
92 particle = nullptr;
93 mass=0.0;
94 currentMaterialIndex = -1;
95
96 Mottcross = new G4ScreeningMottCrossSection();
97 //G4cout <<"## G4eSingleCoulombScatteringModel: " << this << " " << Mottcross << G4endl;
98}
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
101
103{
104 //G4cout <<"## G4eSingleCoulombScatteringModel: delete " << this << " " << Mottcross << G4endl;
105 delete Mottcross;
106}
107
108//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
109
111 const G4DataVector& cuts)
112{
114
115 SetupParticle(p);
116 currentCouple = nullptr;
117 currentMaterialIndex = -1;
118 //cosThetaMin = cos(PolarAngleLimit());
119 Mottcross->Initialise(p,cosThetaMin);
120
121 pCuts = &cuts;
122 //G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3);
123
124 /*
125 G4cout << "!!! G4eSingleCoulombScatteringModel::Initialise for "
126 << part->GetParticleName() << " cos(TetMin)= " << cosThetaMin
127 << " cos(TetMax)= " << cosThetaMax <<G4endl;
128 G4cout << "cut= " << (*pCuts)[0] << " cut1= " << (*pCuts)[1] << G4endl;
129 */
130
131 if(!fParticleChange) {
132 fParticleChange = GetParticleChangeForGamma();
133 }
134
135 if(IsMaster()) {
137 }
138
139 FormFactor=param->NuclearFormfactorType();
140
141 //G4cout<<"NUCLEAR FORM FACTOR: "<<FormFactor<<G4endl;
142}
143
144//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145
146void
148 G4VEmModel* masterModel)
149{
151}
152
153//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
154
156{
157 if(model == "Fast" || model == "fast") { XSectionModel=1; }
158 else if(model == "Precise" || model == "precise") { XSectionModel=0; }
159 else {
160 G4cout<<"G4eSingleCoulombScatteringModel WARNING: "<<model
161 <<" is not a valid model name"<<G4endl;
162 }
163}
164
165//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
166
168 const G4ParticleDefinition* p,
169 G4double kinEnergy,
170 G4double Z,
171 G4double ,
172 G4double,
173 G4double )
174{
175 SetupParticle(p);
176
177 G4double cross =0.0;
178 if(kinEnergy < lowEnergyLimit) return cross;
179
180 DefineMaterial(CurrentCouple());
181
182 //Total Cross section
183 Mottcross->SetupKinematic(kinEnergy, Z);
184 cross = Mottcross->NuclearCrossSection(FormFactor,XSectionModel);
185
186 //cout<< "Compute Cross Section....cross "<<G4BestUnit(cross,"Surface") << " cm2 "<< cross/cm2 <<" Z: "<<Z<<" kinEnergy: "<<kinEnergy<<endl;
187
188 //G4cout<<"Energy: "<<kinEnergy/MeV<<" Total Cross: "<<cross<<G4endl;
189 return cross;
190}
191
192//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
193
195 std::vector<G4DynamicParticle*>* fvect,
196 const G4MaterialCutsCouple* couple,
197 const G4DynamicParticle* dp,
198 G4double cutEnergy,
199 G4double)
200{
201 G4double kinEnergy = dp->GetKineticEnergy();
202 //cout<<"--- kinEnergy "<<kinEnergy<<endl;
203
204 if(kinEnergy < lowEnergyLimit) return;
205
206 DefineMaterial(couple);
207 SetupParticle(dp->GetDefinition());
208
209 // Choose nucleus
210 //last two :cutEnergy= min e kinEnergy=max
211 currentElement = SelectTargetAtom(couple, particle, kinEnergy,
212 dp->GetLogKineticEnergy(), cutEnergy, kinEnergy);
213 G4int iz = currentElement->GetZasInt();
214 G4int ia = SelectIsotopeNumber(currentElement);
216
217 //G4cout<<"..Z: "<<Z<<" ..iz: "<<iz<<" ..ia: "<<ia<<" ..mass2: "<<mass2<<G4endl;
218
219 Mottcross->SetupKinematic(kinEnergy, iz);
220 G4double cross= Mottcross->NuclearCrossSection(FormFactor,XSectionModel);
221 if(cross == 0.0) { return; }
222 //cout<< "Energy: "<<kinEnergy/MeV<<" Z: "<<Z<<"....cross "<<G4BestUnit(cross,"Surface") << " cm2 "<< cross/cm2 <<endl;
223
224 G4double z1 = Mottcross->GetScatteringAngle(FormFactor,XSectionModel);
225 G4double sint = sin(z1);
226 G4double cost = cos(z1);
227 G4double phi = twopi* G4UniformRand();
228
229 // kinematics in the Lab system
230 G4double ptot = sqrt(kinEnergy*(kinEnergy + 2.0*mass));
231 G4double e1 = mass + kinEnergy;
232
233 // Lab. system kinematics along projectile direction
234 G4LorentzVector v0 = G4LorentzVector(0, 0, ptot, e1+mass2);
235 G4LorentzVector v1 = G4LorentzVector(0, 0, ptot, e1);
236 G4ThreeVector bst = v0.boostVector();
237 v1.boost(-bst);
238 // CM projectile
239 G4double momCM = v1.pz();
240
241 // Momentum after scattering of incident particle
242 v1.setX(momCM*sint*cos(phi));
243 v1.setY(momCM*sint*sin(phi));
244 v1.setZ(momCM*cost);
245
246 // CM--->Lab
247 v1.boost(bst);
248
249 // Rotate to global system
251 G4ThreeVector newDirection = v1.vect().unit();
252 newDirection.rotateUz(dir);
253
254 fParticleChange->ProposeMomentumDirection(newDirection);
255
256 // recoil
257 v0 -= v1;
258 G4double trec = std::max(v0.e() - mass2, 0.0);
259 G4double edep = 0.0;
260
261 G4double tcut = recoilThreshold;
262
263 //G4cout<<" Energy Transfered: "<<trec/eV<<G4endl;
264
265 if(pCuts) {
266 tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]);
267 //G4cout<<"Cuts: "<<(*pCuts)[currentMaterialIndex]/eV<<" eV"<<G4endl;
268 //G4cout<<"Threshold: "<<tcut/eV<<" eV"<<G4endl;
269 }
270
271 if(trec > tcut) {
272 G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0);
273 newDirection = v0.vect().unit();
274 newDirection.rotateUz(dir);
275 G4DynamicParticle* newdp = new G4DynamicParticle(ion, newDirection, trec);
276 fvect->push_back(newdp);
277 } else if(trec > 0.0) {
278 edep = trec;
279 fParticleChange->ProposeNonIonizingEnergyDeposit(edep);
280 }
281
282 // finelize primary energy and energy balance
283 G4double finalT = v1.e() - mass;
284 //G4cout<<"Final Energy: "<<finalT/eV<<G4endl;
285 if(finalT <= lowEnergyLimit) {
286 edep += finalT;
287 finalT = 0.0;
288 }
289 edep = std::max(edep, 0.0);
290 fParticleChange->SetProposedKineticEnergy(finalT);
291 fParticleChange->ProposeLocalEnergyDeposit(edep);
292
293}
294
295//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
CLHEP::HepLorentzVector G4LorentzVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetLogKineticEnergy() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4int GetZasInt() const
Definition: G4Element.hh:131
static G4EmParameters * Instance()
G4NuclearFormfactorType NuclearFormfactorType() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4NistManager * Instance()
static G4double GetNuclearMass(const G4double A, const G4double Z)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
G4double NuclearCrossSection(G4int form, G4int fast)
void SetupKinematic(G4double kinEnergy, G4int Z)
void Initialise(const G4ParticleDefinition *, G4double cosThetaLim)
G4double GetScatteringAngle(G4int form, G4int fast)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:842
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:834
G4bool IsMaster() const
Definition: G4VEmModel.hh:736
G4int SelectIsotopeNumber(const G4Element *)
Definition: G4VEmModel.cc:337
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:480
const G4Element * SelectTargetAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:587
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) final
G4eSingleCoulombScatteringModel(const G4String &nam="eSingleCoulombScat")
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) final
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) final
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax) final