Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BetaMinusDecay.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26////////////////////////////////////////////////////////////////////////////////
27// //
28// File: G4BetaMinusDecay.cc //
29// Author: D.H. Wright (SLAC) //
30// Date: 25 October 2014 //
31// //
32////////////////////////////////////////////////////////////////////////////////
33
34#include "G4BetaMinusDecay.hh"
36#include "G4ThreeVector.hh"
37#include "G4DynamicParticle.hh"
38#include "G4DecayProducts.hh"
40#include "G4SystemOfUnits.hh"
41#include <iostream>
42#include <iomanip>
43
45 const G4double& branch, const G4double& e0,
46 const G4double& excitationE,
47 const G4Ions::G4FloatLevelBase& flb,
48 const G4BetaDecayType& betaType)
49 : G4NuclearDecay("beta- decay", BetaMinus, excitationE, flb), endpointEnergy(e0)
50{
51 SetParent(theParentNucleus); // Store name of parent nucleus, delete G4MT_parent
52 SetBR(branch);
53
55 G4IonTable* theIonTable =
57 G4int daughterZ = theParentNucleus->GetAtomicNumber() + 1;
58 G4int daughterA = theParentNucleus->GetAtomicMass();
59 SetDaughter(0, theIonTable->GetIon(daughterZ, daughterA, excitationE, flb) );
60 SetDaughter(1, "e-");
61 SetDaughter(2, "anti_nu_e");
62
63 SetUpBetaSpectrumSampler(daughterZ, daughterA, betaType);
64}
65
66
68{
69 delete spectrumSampler;
70}
71
72
74{
75 // Fill G4MT_parent with theParentNucleus (stored by SetParent in ctor)
77
78 // Fill G4MT_daughters with e-, nu and residual nucleus (stored by SetDaughter)
80
81 G4double parentMass = G4MT_parent->GetPDGMass();
83 G4double nucleusMass = G4MT_daughters[0]->GetPDGMass();
84 // Set up final state
85 // parentParticle is set at rest here because boost with correct momentum
86 // is done later
87 G4DynamicParticle parentParticle(G4MT_parent, G4ThreeVector(0,0,0), 0.0);
88 G4DecayProducts* products = new G4DecayProducts(parentParticle);
89
90 if (spectrumSampler) {
91 // Electron, neutrino and daughter nucleus energies
92 G4double eKE = endpointEnergy*spectrumSampler->shoot(G4Random::getTheEngine() );
93 G4double eMomentum = std::sqrt(eKE*(eKE + 2.*eMass) );
94
95 G4double cosThetaENu = 2.*G4UniformRand() - 1.;
96 G4double eTE = eMass + eKE;
97 G4double nuEnergy = ((endpointEnergy - eKE)*(parentMass + nucleusMass - eTE)
98 - eMomentum*eMomentum)/(parentMass - eTE + eMomentum*cosThetaENu)/2.;
99
100 // Electron 4-vector, isotropic angular distribution
101 G4double cosTheta = 2.*G4UniformRand() - 1.0;
102 G4double sinTheta = std::sqrt(1.0 - cosTheta*cosTheta);
103
104 G4double phi = twopi*G4UniformRand()*rad;
105 G4double sinPhi = std::sin(phi);
106 G4double cosPhi = std::cos(phi);
107
108 G4ParticleMomentum eDirection(sinTheta*cosPhi, sinTheta*sinPhi, cosTheta);
109 G4DynamicParticle* dynamicElectron
110 = new G4DynamicParticle(G4MT_daughters[1], eDirection*eMomentum);
111 products->PushProducts(dynamicElectron);
112
113 // Neutrino 4-vector
114 G4double sinThetaENu = std::sqrt(1.0 - cosThetaENu*cosThetaENu);
115 phi = twopi*G4UniformRand()*rad;
116 G4double sinPhiNu = std::sin(phi);
117 G4double cosPhiNu = std::cos(phi);
118
119 G4ParticleMomentum nuDirection;
120 nuDirection.setX(sinThetaENu*cosPhiNu*cosTheta*cosPhi -
121 sinThetaENu*sinPhiNu*sinPhi + cosThetaENu*sinTheta*cosPhi);
122 nuDirection.setY(sinThetaENu*cosPhiNu*cosTheta*sinPhi +
123 sinThetaENu*sinPhiNu*cosPhi + cosThetaENu*sinTheta*sinPhi);
124 nuDirection.setZ(-sinThetaENu*cosPhiNu*sinTheta + cosThetaENu*cosTheta);
125
126 G4DynamicParticle* dynamicNeutrino
127 = new G4DynamicParticle(G4MT_daughters[2], nuDirection*nuEnergy);
128 products->PushProducts(dynamicNeutrino);
129
130 // Daughter nucleus 4-vector
131 // p_D = - p_e - p_nu
132 G4DynamicParticle* dynamicDaughter =
134 -eDirection*eMomentum - nuDirection*nuEnergy);
135 products->PushProducts(dynamicDaughter);
136
137 } else {
138 // electron energy below threshold -> no decay
139 G4DynamicParticle* noDecay =
141 products->PushProducts(noDecay);
142 }
143
144 // Check energy conservation against Q value, not nuclear masses
145 /*
146 G4int nProd = products->entries();
147 G4DynamicParticle* temp = 0;
148 G4double Esum = 0.0;
149 for (G4int i = 0; i < nProd; i++) {
150 temp = products->operator[](i);
151 // G4cout << temp->GetParticleDefinition()->GetParticleName() << " has "
152 // << temp->GetTotalEnergy()/keV << " keV " << G4endl;
153 Esum += temp->GetKineticEnergy();
154 }
155 G4double eCons = (endpointEnergy - Esum)/keV;
156 if (std::abs(eCons) > 0.001) G4cout << " Beta- check: eCons = " << eCons << G4endl;
157 */
158 return products;
159}
160
161
162void
163G4BetaMinusDecay::SetUpBetaSpectrumSampler(const G4int& daughterZ,
164 const G4int& daughterA,
165 const G4BetaDecayType& betaType)
166{
167 G4double e0 = endpointEnergy/CLHEP::electron_mass_c2;
168 G4BetaDecayCorrections corrections(daughterZ, daughterA);
169 spectrumSampler = 0;
170
171 if (e0 > 0) {
172 // Array to store spectrum pdf
173 G4int npti = 100;
174 G4double* pdf = new G4double[npti];
175
176 G4double e; // Total electron energy in units of electron mass
177 G4double p; // Electron momentum in units of electron mass
178 G4double f; // Spectral shape function
179 for (G4int ptn = 0; ptn < npti; ptn++) {
180 // Calculate simple phase space
181 e = 1. + e0*(G4double(ptn) + 0.5)/G4double(npti);
182 p = std::sqrt(e*e - 1.);
183 f = p*e*(e0 - e + 1.)*(e0 - e + 1.);
184
185 // Apply Fermi factor to get allowed shape
186 f *= corrections.FermiFunction(e);
187
188 // Apply shape factor for forbidden transitions
189 f *= corrections.ShapeFactor(betaType, p, e0-e+1.);
190 pdf[ptn] = f;
191 }
192 spectrumSampler = new G4RandGeneral(pdf, npti);
193 delete[] pdf;
194 }
195}
196
197
199{
200 G4cout << " G4BetaMinusDecay for parent nucleus " << GetParentName() << G4endl;
201 G4cout << " decays to " << GetDaughterName(0) << " , " << GetDaughterName(1)
202 << " and " << GetDaughterName(2) << " with branching ratio " << GetBR()
203 << "% and endpoint energy " << endpointEnergy/keV << " keV " << G4endl;
204}
205
G4BetaDecayType
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
#define G4RandGeneral
Definition: Randomize.hh:49
void setY(double)
void setZ(double)
void setX(double)
virtual G4DecayProducts * DecayIt(G4double)
G4BetaMinusDecay(const G4ParticleDefinition *theParentNucleus, const G4double &theBR, const G4double &endpointE, const G4double &ex, const G4Ions::G4FloatLevelBase &flb, const G4BetaDecayType &type)
virtual ~G4BetaMinusDecay()
virtual void DumpNuclearInfo()
G4int PushProducts(G4DynamicParticle *aParticle)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
G4FloatLevelBase
Definition: G4Ions.hh:83
G4int GetAtomicNumber() const
G4int GetAtomicMass() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
G4ParticleDefinition ** G4MT_daughters
G4double GetBR() const
const G4String & GetParentName() const
void SetBR(G4double value)
void SetNumberOfDaughters(G4int value)
G4ParticleDefinition * G4MT_parent
void CheckAndFillDaughters()
void SetDaughter(G4int anIndex, const G4ParticleDefinition *particle_type)
const G4String & GetDaughterName(G4int anIndex) const
void SetParent(const G4ParticleDefinition *particle_type)