Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LowEPComptonModel Class Reference

#include <G4LowEPComptonModel.hh>

+ Inheritance diagram for G4LowEPComptonModel:

Public Member Functions

 G4LowEPComptonModel (const G4ParticleDefinition *p=0, const G4String &nam="LowEPComptonModel")
 
virtual ~G4LowEPComptonModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
virtual G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectRandomAtomNumber (const G4Material *)
 
G4int SelectIsotopeNumber (const G4Element *)
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
const G4ElementGetCurrentElement () const
 
const G4IsotopeGetCurrentIsotope () const
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData
 
G4VParticleChangepParticleChange
 
G4PhysicsTablexSectionTable
 
const G4MaterialpBaseMaterial
 
const std::vector< G4double > * theDensityFactor
 
const std::vector< G4int > * theDensityIdx
 
size_t idxTable
 
G4bool lossFlucFlag
 
G4double inveplus
 
G4double pFactor
 

Detailed Description

Definition at line 81 of file G4LowEPComptonModel.hh.

Constructor & Destructor Documentation

◆ G4LowEPComptonModel()

G4LowEPComptonModel::G4LowEPComptonModel ( const G4ParticleDefinition p = 0,
const G4String nam = "LowEPComptonModel" 
)

Definition at line 96 of file G4LowEPComptonModel.cc.

98 : G4VEmModel(nam),isInitialised(false)
99{
100 verboseLevel=1 ;
101 // Verbosity scale:
102 // 0 = nothing
103 // 1 = warning for energy non-conservation
104 // 2 = details of energy budget
105 // 3 = calculation of cross sections, file openings, sampling of atoms
106 // 4 = entering in methods
107
108 if( verboseLevel>1 ) {
109 G4cout << "Low energy photon Compton model is constructed " << G4endl;
110 }
111
112 //Mark this model as "applicable" for atomic deexcitation
114
115 fParticleChange = 0;
116 fAtomDeexcitation = 0;
117}
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:813

◆ ~G4LowEPComptonModel()

G4LowEPComptonModel::~G4LowEPComptonModel ( )
virtual

Definition at line 121 of file G4LowEPComptonModel.cc.

122{
123 if(IsMaster()) {
124 delete shellData;
125 shellData = 0;
126 delete profileData;
127 profileData = 0;
128 }
129}
G4bool IsMaster() const
Definition: G4VEmModel.hh:736

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4LowEPComptonModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition ,
G4double  kinEnergy,
G4double  Z,
G4double  A = 0,
G4double  cut = 0,
G4double  emax = DBL_MAX 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 262 of file G4LowEPComptonModel.cc.

266{
267 if (verboseLevel > 3) {
268 G4cout << "G4LowEPComptonModel::ComputeCrossSectionPerAtom()"
269 << G4endl;
270 }
271 G4double cs = 0.0;
272
273 if (GammaEnergy < LowEnergyLimit()) { return 0.0; }
274
275 G4int intZ = G4lrint(Z);
276 if(intZ < 1 || intZ > maxZ) { return cs; }
277
278 G4LPhysicsFreeVector* pv = data[intZ];
279
280 // if element was not initialised
281 // do initialisation safely for MT mode
282 if(!pv)
283 {
284 InitialiseForElement(0, intZ);
285 pv = data[intZ];
286 if(!pv) { return cs; }
287 }
288
289 G4int n = pv->GetVectorLength() - 1;
290 G4double e1 = pv->Energy(0);
291 G4double e2 = pv->Energy(n);
292
293 if(GammaEnergy <= e1) { cs = GammaEnergy/(e1*e1)*pv->Value(e1); }
294 else if(GammaEnergy <= e2) { cs = pv->Value(GammaEnergy)/GammaEnergy; }
295 else if(GammaEnergy > e2) { cs = pv->Value(e2)/GammaEnergy; }
296
297 return cs;
298}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
virtual void InitialiseForElement(const G4ParticleDefinition *, G4int Z)
G4double Energy(std::size_t index) const
G4double Value(G4double theEnergy, std::size_t &lastidx) const
std::size_t GetVectorLength() const
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
int G4lrint(double ad)
Definition: templates.hh:134

◆ Initialise()

void G4LowEPComptonModel::Initialise ( const G4ParticleDefinition particle,
const G4DataVector cuts 
)
virtual

Implements G4VEmModel.

Definition at line 133 of file G4LowEPComptonModel.cc.

135{
136 if (verboseLevel > 1) {
137 G4cout << "Calling G4LowEPComptonModel::Initialise()" << G4endl;
138 }
139
140 // Initialise element selector
141
142 if(IsMaster()) {
143
144 // Access to elements
145
146 char* path = std::getenv("G4LEDATA");
147
148 G4ProductionCutsTable* theCoupleTable =
150 G4int numOfCouples = theCoupleTable->GetTableSize();
151
152 for(G4int i=0; i<numOfCouples; ++i) {
153 const G4Material* material =
154 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
155 const G4ElementVector* theElementVector = material->GetElementVector();
156 G4int nelm = material->GetNumberOfElements();
157
158 for (G4int j=0; j<nelm; ++j) {
159 G4int Z = G4lrint((*theElementVector)[j]->GetZ());
160 if(Z < 1) { Z = 1; }
161 else if(Z > maxZ){ Z = maxZ; }
162
163 if( (!data[Z]) ) { ReadData(Z, path); }
164 }
165 }
166
167 // For Doppler broadening
168 if(!shellData) {
169 shellData = new G4ShellData();
170 shellData->SetOccupancyData();
171 G4String file = "/doppler/shell-doppler";
172 shellData->LoadData(file);
173 }
174 if(!profileData) { profileData = new G4DopplerProfile(); }
175
176 InitialiseElementSelectors(particle, cuts);
177 }
178
179 if (verboseLevel > 2) {
180 G4cout << "Loaded cross section files" << G4endl;
181 }
182
183 if( verboseLevel>1 ) {
184 G4cout << "G4LowEPComptonModel is initialized " << G4endl
185 << "Energy range: "
186 << LowEnergyLimit() / eV << " eV - "
187 << HighEnergyLimit() / GeV << " GeV"
188 << G4endl;
189 }
190
191 if(isInitialised) { return; }
192
193 fParticleChange = GetParticleChangeForGamma();
194 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
195 isInitialised = true;
196}
std::vector< G4Element * > G4ElementVector
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetOccupancyData()
Definition: G4ShellData.hh:69
void LoadData(const G4String &fileName)
Definition: G4ShellData.cc:233
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:645
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148

◆ InitialiseForElement()

void G4LowEPComptonModel::InitialiseForElement ( const G4ParticleDefinition ,
G4int  Z 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 708 of file G4LowEPComptonModel.cc.

710{
711 G4AutoLock l(&LowEPComptonModelMutex);
712 if(!data[Z]) { ReadData(Z); }
713 l.unlock();
714}

Referenced by ComputeCrossSectionPerAtom().

◆ InitialiseLocal()

void G4LowEPComptonModel::InitialiseLocal ( const G4ParticleDefinition ,
G4VEmModel masterModel 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 200 of file G4LowEPComptonModel.cc.

202{
204}
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:842
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:834

◆ SampleSecondaries()

void G4LowEPComptonModel::SampleSecondaries ( std::vector< G4DynamicParticle * > *  fvect,
const G4MaterialCutsCouple couple,
const G4DynamicParticle aDynamicGamma,
G4double  tmin,
G4double  maxEnergy 
)
virtual

Implements G4VEmModel.

Definition at line 302 of file G4LowEPComptonModel.cc.

306{
307
308 // The scattered gamma energy is sampled according to Klein - Nishina formula.
309 // then accepted or rejected depending on the Scattering Function multiplied
310 // by factor from Klein - Nishina formula.
311 // Expression of the angular distribution as Klein Nishina
312 // angular and energy distribution and Scattering fuctions is taken from
313 // D. E. Cullen "A simple model of photon transport" Nucl. Instr. Meth.
314 // Phys. Res. B 101 (1995). Method of sampling with form factors is different
315 // data are interpolated while in the article they are fitted.
316 // Reference to the article is from J. Stepanek New Photon, Positron
317 // and Electron Interaction Data for GEANT in Energy Range from 1 eV to 10
318 // TeV (draft).
319 // The random number techniques of Butcher & Messel are used
320 // (Nucl Phys 20(1960),15).
321
322
323 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy()/MeV;
324
325 if (verboseLevel > 3) {
326 G4cout << "G4LowEPComptonModel::SampleSecondaries() E(MeV)= "
327 << photonEnergy0/MeV << " in " << couple->GetMaterial()->GetName()
328 << G4endl;
329 }
330 // do nothing below the threshold
331 // should never get here because the XS is zero below the limit
332 if (photonEnergy0 < LowEnergyLimit())
333 return ;
334
335 G4double e0m = photonEnergy0 / electron_mass_c2 ;
336 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
337
338 // Select randomly one element in the current material
339
340 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
341 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
342 G4int Z = (G4int)elm->GetZ();
343
344 G4double LowEPCepsilon0 = 1. / (1. + 2. * e0m);
345 G4double LowEPCepsilon0Sq = LowEPCepsilon0 * LowEPCepsilon0;
346 G4double alpha1 = -std::log(LowEPCepsilon0);
347 G4double alpha2 = 0.5 * (1. - LowEPCepsilon0Sq);
348
349 G4double wlPhoton = h_Planck*c_light/photonEnergy0;
350
351 // Sample the energy of the scattered photon
352 G4double LowEPCepsilon;
353 G4double LowEPCepsilonSq;
354 G4double oneCosT;
355 G4double sinT2;
356 G4double gReject;
357
358 if (verboseLevel > 3) {
359 G4cout << "Started loop to sample gamma energy" << G4endl;
360 }
361
362 do
363 {
364 if ( alpha1/(alpha1+alpha2) > G4UniformRand())
365 {
366 LowEPCepsilon = G4Exp(-alpha1 * G4UniformRand());
367 LowEPCepsilonSq = LowEPCepsilon * LowEPCepsilon;
368 }
369 else
370 {
371 LowEPCepsilonSq = LowEPCepsilon0Sq + (1. - LowEPCepsilon0Sq) * G4UniformRand();
372 LowEPCepsilon = std::sqrt(LowEPCepsilonSq);
373 }
374
375 oneCosT = (1. - LowEPCepsilon) / ( LowEPCepsilon * e0m);
376 sinT2 = oneCosT * (2. - oneCosT);
377 G4double x = std::sqrt(oneCosT/2.) / (wlPhoton/cm);
378 G4double scatteringFunction = ComputeScatteringFunction(x, Z);
379 gReject = (1. - LowEPCepsilon * sinT2 / (1. + LowEPCepsilonSq)) * scatteringFunction;
380
381 } while(gReject < G4UniformRand()*Z);
382
383 G4double cosTheta = 1. - oneCosT;
384 G4double sinTheta = std::sqrt(sinT2);
385 G4double phi = twopi * G4UniformRand();
386 G4double dirx = sinTheta * std::cos(phi);
387 G4double diry = sinTheta * std::sin(phi);
388 G4double dirz = cosTheta ;
389
390
391 // Scatter photon energy and Compton electron direction - Method based on:
392 // J. M. C. Brown, M. R. Dimmock, J. E. Gillam and D. M. Paganin'
393 // "A low energy bound atomic electron Compton scattering model for Geant4"
394 // NIMB, Vol. 338, 77-88, 2014.
395
396 // Set constants and initialize scattering parameters
397
398 const G4double vel_c = c_light / (m/s);
399 const G4double momentum_au_to_nat = halfpi* hbar_Planck / Bohr_radius / (kg*m/s);
400 const G4double e_mass_kg = electron_mass_c2 / c_squared / kg ;
401
402 const G4int maxDopplerIterations = 1000;
403 G4double bindingE = 0.;
404 G4double pEIncident = photonEnergy0 ;
405 G4double pERecoil = -1.;
406 G4double eERecoil = -1.;
407 G4double e_alpha =0.;
408 G4double e_beta = 0.;
409
410 G4double CE_emission_flag = 0.;
411 G4double ePAU = -1;
412 G4int shellIdx = 0;
413 G4double u_temp = 0;
414 G4double cosPhiE =0;
415 G4double sinThetaE =0;
416 G4double cosThetaE =0;
417 G4int iteration = 0;
418
419 if (verboseLevel > 3) {
420 G4cout << "Started loop to sample photon energy and electron direction" << G4endl;
421 }
422
423 do{
424
425
426 // ******************************************
427 // | Determine scatter photon energy |
428 // ******************************************
429
430 do
431 {
432 iteration++;
433
434
435 // ********************************************
436 // | Sample bound electron information |
437 // ********************************************
438
439 // Select shell based on shell occupancy
440
441 shellIdx = shellData->SelectRandomShell(Z);
442 bindingE = shellData->BindingEnergy(Z,shellIdx)/MeV;
443
444
445 // Randomly sample bound electron momentum (memento: the data set is in Atomic Units)
446 ePAU = profileData->RandomSelectMomentum(Z,shellIdx);
447
448 // Convert to SI units
449 G4double ePSI = ePAU * momentum_au_to_nat;
450
451 //Calculate bound electron velocity and normalise to natural units
452 u_temp = sqrt( ((ePSI*ePSI)*(vel_c*vel_c)) / ((e_mass_kg*e_mass_kg)*(vel_c*vel_c)+(ePSI*ePSI)) )/vel_c;
453
454 // Sample incident electron direction, amorphous material, to scattering photon scattering plane
455
456 e_alpha = pi*G4UniformRand();
457 e_beta = twopi*G4UniformRand();
458
459 // Total energy of system
460
461 G4double eEIncident = electron_mass_c2 / sqrt( 1 - (u_temp*u_temp));
462 G4double systemE = eEIncident + pEIncident;
463
464
465 G4double gamma_temp = 1.0 / sqrt( 1 - (u_temp*u_temp));
466 G4double numerator = gamma_temp*electron_mass_c2*(1 - u_temp * std::cos(e_alpha));
467 G4double subdenom1 = u_temp*cosTheta*std::cos(e_alpha);
468 G4double subdenom2 = u_temp*sinTheta*std::sin(e_alpha)*std::cos(e_beta);
469 G4double denominator = (1.0 - cosTheta) + (gamma_temp*electron_mass_c2*(1 - subdenom1 - subdenom2) / pEIncident);
470 pERecoil = (numerator/denominator);
471 eERecoil = systemE - pERecoil;
472 CE_emission_flag = pEIncident - pERecoil;
473 } while ( (iteration <= maxDopplerIterations) && (CE_emission_flag < bindingE));
474
475// End of recalculation of photon energy with Doppler broadening
476
477
478
479 // *******************************************************
480 // | Determine ejected Compton electron direction |
481 // *******************************************************
482
483 // Calculate velocity of ejected Compton electron
484
485 G4double a_temp = eERecoil / electron_mass_c2;
486 G4double u_p_temp = sqrt(1 - (1 / (a_temp*a_temp)));
487
488 // Coefficients and terms from simulatenous equations
489
490 G4double sinAlpha = std::sin(e_alpha);
491 G4double cosAlpha = std::cos(e_alpha);
492 G4double sinBeta = std::sin(e_beta);
493 G4double cosBeta = std::cos(e_beta);
494
495 G4double gamma = 1.0 / sqrt(1 - (u_temp*u_temp));
496 G4double gamma_p = 1.0 / sqrt(1 - (u_p_temp*u_p_temp));
497
498 G4double var_A = pERecoil*u_p_temp*sinTheta;
499 G4double var_B = u_p_temp* (pERecoil*cosTheta-pEIncident);
500 G4double var_C = (pERecoil-pEIncident) - ( (pERecoil*pEIncident) / (gamma_p*electron_mass_c2))*(1 - cosTheta);
501
502 G4double var_D1 = gamma*electron_mass_c2*pERecoil;
503 G4double var_D2 = (1 - (u_temp*cosTheta*cosAlpha) - (u_temp*sinTheta*cosBeta*sinAlpha));
504 G4double var_D3 = ((electron_mass_c2*electron_mass_c2)*(gamma*gamma_p - 1)) - (gamma_p*electron_mass_c2*pERecoil);
505 G4double var_D = var_D1*var_D2 + var_D3;
506
507 G4double var_E1 = ((gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*cosAlpha);
508 G4double var_E2 = gamma_p*electron_mass_c2*pERecoil*u_p_temp*cosTheta;
509 G4double var_E = var_E1 - var_E2;
510
511 G4double var_F1 = ((gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*cosBeta*sinAlpha);
512 G4double var_F2 = (gamma_p*electron_mass_c2*pERecoil*u_p_temp*sinTheta);
513 G4double var_F = var_F1 - var_F2;
514
515 G4double var_G = (gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*sinBeta*sinAlpha;
516
517 // Two equations form a quadratic form of Wx^2 + Yx + Z = 0
518 // Coefficents and solution to quadratic
519
520 G4double var_W1 = (var_F*var_B - var_E*var_A)*(var_F*var_B - var_E*var_A);
521 G4double var_W2 = (var_G*var_G)*(var_A*var_A) + (var_G*var_G)*(var_B*var_B);
522 G4double var_W = var_W1 + var_W2;
523
524 G4double var_Y = 2.0*(((var_A*var_D-var_F*var_C)*(var_F*var_B-var_E*var_A)) - ((var_G*var_G)*var_B*var_C));
525
526 G4double var_Z1 = (var_A*var_D - var_F*var_C)*(var_A*var_D - var_F*var_C);
527 G4double var_Z2 = (var_G*var_G)*(var_C*var_C) - (var_G*var_G)*(var_A*var_A);
528 G4double var_Z = var_Z1 + var_Z2;
529 G4double diff1 = var_Y*var_Y;
530 G4double diff2 = 4*var_W*var_Z;
531 G4double diff = diff1 - diff2;
532
533
534 // Check if diff is less than zero, if so ensure it is due to FPE
535
536 //Determine number of digits (in decimal base) that G4double can accurately represent
537 G4double g4d_order = G4double(numeric_limits<G4double>::digits10);
538 G4double g4d_limit = std::pow(10.,-g4d_order);
539 //Confirm that diff less than zero is due FPE, i.e if abs of diff / diff1 and diff/ diff2 is less
540 //than 10^(-g4d_order), then set diff to zero
541
542 if ((diff < 0.0) && (abs(diff / diff1) < g4d_limit) && (abs(diff / diff2) < g4d_limit) )
543 {
544 diff = 0.0;
545 }
546
547
548 // Plus and minus of quadratic
549 G4double X_p = (-var_Y + sqrt (diff))/(2*var_W);
550 G4double X_m = (-var_Y - sqrt (diff))/(2*var_W);
551
552
553 // Floating point precision protection
554 // Check if X_p and X_m are greater than or less than 1 or -1, if so clean up FPE
555 // Issue due to propagation of FPE and only impacts 8th sig fig onwards
556
557 if(X_p >1){X_p=1;} if(X_p<-1){X_p=-1;}
558 if(X_m >1){X_m=1;} if(X_m<-1){X_m=-1;}
559
560 // End of FP protection
561
562 G4double ThetaE = 0.;
563
564
565 // Randomly sample one of the two possible solutions and determin theta angle of ejected Compton electron
566 G4double sol_select = G4UniformRand();
567
568 if (sol_select < 0.5)
569 {
570 ThetaE = std::acos(X_p);
571 }
572 if (sol_select > 0.5)
573 {
574 ThetaE = std::acos(X_m);
575 }
576
577
578 cosThetaE = std::cos(ThetaE);
579 sinThetaE = std::sin(ThetaE);
580 G4double Theta = std::acos(cosTheta);
581
582 //Calculate electron Phi
583 G4double iSinThetaE = std::sqrt(1+std::tan((pi/2.0)-ThetaE)*std::tan((pi/2.0)-ThetaE));
584 G4double iSinTheta = std::sqrt(1+std::tan((pi/2.0)-Theta)*std::tan((pi/2.0)-Theta));
585 G4double ivar_A = iSinTheta/ (pERecoil*u_p_temp);
586 // Trigs
587 cosPhiE = (var_C - var_B*cosThetaE)*(ivar_A*iSinThetaE);
588
589 // End of calculation of ejection Compton electron direction
590
591 //Fix for floating point errors
592
593 } while ( (iteration <= maxDopplerIterations) && (abs(cosPhiE) > 1));
594
595 // Revert to original if maximum number of iterations threshold has been reached
596 if (iteration >= maxDopplerIterations)
597 {
598 pERecoil = photonEnergy0 ;
599 bindingE = 0.;
600 dirx=0.0;
601 diry=0.0;
602 dirz=1.0;
603 }
604
605 // Set "scattered" photon direction and energy
606
607 G4ThreeVector photonDirection1(dirx,diry,dirz);
608 photonDirection1.rotateUz(photonDirection0);
609 fParticleChange->ProposeMomentumDirection(photonDirection1) ;
610
611 if (pERecoil > 0.)
612 {
613 fParticleChange->SetProposedKineticEnergy(pERecoil) ;
614
615 // Set ejected Compton electron direction and energy
616 G4double PhiE = std::acos(cosPhiE);
617 G4double eDirX = sinThetaE * std::cos(phi+PhiE);
618 G4double eDirY = sinThetaE * std::sin(phi+PhiE);
619 G4double eDirZ = cosThetaE;
620
621 G4double eKineticEnergy = pEIncident - pERecoil - bindingE;
622
623 G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
624 eDirection.rotateUz(photonDirection0);
626 eDirection,eKineticEnergy) ;
627 fvect->push_back(dp);
628
629 }
630 else
631 {
632 fParticleChange->SetProposedKineticEnergy(0.);
633 fParticleChange->ProposeTrackStatus(fStopAndKill);
634 }
635
636 // sample deexcitation
637 //
638
639 if (verboseLevel > 3) {
640 G4cout << "Started atomic de-excitation " << fAtomDeexcitation << G4endl;
641 }
642
643 if(fAtomDeexcitation && iteration < maxDopplerIterations) {
644 G4int index = couple->GetIndex();
645 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
646 size_t nbefore = fvect->size();
648 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
649 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
650 size_t nafter = fvect->size();
651 if(nafter > nbefore) {
652 for (size_t i=nbefore; i<nafter; ++i) {
653 //Check if there is enough residual energy
654 if (bindingE >= ((*fvect)[i])->GetKineticEnergy())
655 {
656 //Ok, this is a valid secondary: keep it
657 bindingE -= ((*fvect)[i])->GetKineticEnergy();
658 }
659 else
660 {
661 //Invalid secondary: not enough energy to create it!
662 //Keep its energy in the local deposit
663 delete (*fvect)[i];
664 (*fvect)[i]=0;
665 }
666 }
667 }
668 }
669 }
670
671 //This should never happen
672 if(bindingE < 0.0)
673 G4Exception("G4LowEPComptonModel::SampleSecondaries()",
674 "em2051",FatalException,"Negative local energy deposit");
675
676 fParticleChange->ProposeLocalEnergyDeposit(bindingE);
677
678}
G4AtomicShellEnumerator
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ fStopAndKill
#define G4UniformRand()
Definition: Randomize.hh:52
G4double RandomSelectMomentum(G4int Z, G4int shellIndex) const
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetZ() const
Definition: G4Element.hh:130
const G4String & GetName() const
Definition: G4Material.hh:175
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double BindingEnergy(G4int Z, G4int shellIndex) const
Definition: G4ShellData.cc:165
G4int SelectRandomShell(G4int Z) const
Definition: G4ShellData.cc:362
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:570
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
const G4double pi

The documentation for this class was generated from the following files: