Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SynchrotronRadiationInMat.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// --------------------------------------------------------------
29// GEANT 4 class implementation file
30// CERN Geneva Switzerland
31//
32// History: first implementation,
33// 21-5-98 V.Grichine
34// 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation
35// 04.03.05, V.Grichine: get local field interface
36// 19-05-06, V.Ivanchenko rename from G4SynchrotronRadiation
37//
38//
39///////////////////////////////////////////////////////////////////////////
40
43#include "G4SystemOfUnits.hh"
44#include "G4Integrator.hh"
45#include "G4EmProcessSubType.hh"
46
47////////////////////////////////////////////////////////////////////
48//
49// Constant for calculation of mean free path
50//
51
52const G4double
53G4SynchrotronRadiationInMat::fLambdaConst = std::sqrt(3.0)*electron_mass_c2/
54 (2.5*fine_structure_const*eplus*c_light) ;
55
56/////////////////////////////////////////////////////////////////////
57//
58// Constant for calculation of characterictic energy
59//
60
61const G4double
62G4SynchrotronRadiationInMat::fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck/
63 electron_mass_c2 ;
64
65////////////////////////////////////////////////////////////////////
66//
67// Array of integral probability of synchrotron photons:
68//
69// the corresponding energy = 0.0001*i*i*(characteristic energy)
70//
71
72const G4double
73G4SynchrotronRadiationInMat::fIntegralProbabilityOfSR[200] =
74{
75 1.000000e+00, 9.428859e-01, 9.094095e-01, 8.813971e-01, 8.565154e-01,
76 8.337008e-01, 8.124961e-01, 7.925217e-01, 7.735517e-01, 7.554561e-01,
77 7.381233e-01, 7.214521e-01, 7.053634e-01, 6.898006e-01, 6.747219e-01,
78 6.600922e-01, 6.458793e-01, 6.320533e-01, 6.185872e-01, 6.054579e-01,
79 5.926459e-01, 5.801347e-01, 5.679103e-01, 5.559604e-01, 5.442736e-01,
80 5.328395e-01, 5.216482e-01, 5.106904e-01, 4.999575e-01, 4.894415e-01,
81 4.791351e-01, 4.690316e-01, 4.591249e-01, 4.494094e-01, 4.398800e-01,
82 4.305320e-01, 4.213608e-01, 4.123623e-01, 4.035325e-01, 3.948676e-01,
83 3.863639e-01, 3.780179e-01, 3.698262e-01, 3.617858e-01, 3.538933e-01,
84 3.461460e-01, 3.385411e-01, 3.310757e-01, 3.237474e-01, 3.165536e-01,
85 3.094921e-01, 3.025605e-01, 2.957566e-01, 2.890784e-01, 2.825237e-01,
86 2.760907e-01, 2.697773e-01, 2.635817e-01, 2.575020e-01, 2.515365e-01,
87 2.456834e-01, 2.399409e-01, 2.343074e-01, 2.287812e-01, 2.233607e-01,
88 2.180442e-01, 2.128303e-01, 2.077174e-01, 2.027040e-01, 1.977885e-01,
89 1.929696e-01, 1.882457e-01, 1.836155e-01, 1.790775e-01, 1.746305e-01,
90 1.702730e-01, 1.660036e-01, 1.618212e-01, 1.577243e-01, 1.537117e-01,
91 1.497822e-01, 1.459344e-01, 1.421671e-01, 1.384791e-01, 1.348691e-01,
92 1.313360e-01, 1.278785e-01, 1.244956e-01, 1.211859e-01, 1.179483e-01,
93 1.147818e-01, 1.116850e-01, 1.086570e-01, 1.056966e-01, 1.028026e-01,
94 9.997405e-02, 9.720975e-02, 9.450865e-02, 9.186969e-02, 8.929179e-02,
95 8.677391e-02, 8.431501e-02, 8.191406e-02, 7.957003e-02, 7.728192e-02,
96 7.504872e-02, 7.286944e-02, 7.074311e-02, 6.866874e-02, 6.664538e-02,
97 6.467208e-02, 6.274790e-02, 6.087191e-02, 5.904317e-02, 5.726079e-02,
98 5.552387e-02, 5.383150e-02, 5.218282e-02, 5.057695e-02, 4.901302e-02,
99 4.749020e-02, 4.600763e-02, 4.456450e-02, 4.315997e-02, 4.179325e-02,
100 4.046353e-02, 3.917002e-02, 3.791195e-02, 3.668855e-02, 3.549906e-02,
101 3.434274e-02, 3.321884e-02, 3.212665e-02, 3.106544e-02, 3.003452e-02,
102 2.903319e-02, 2.806076e-02, 2.711656e-02, 2.619993e-02, 2.531021e-02,
103 2.444677e-02, 2.360897e-02, 2.279620e-02, 2.200783e-02, 2.124327e-02,
104 2.050194e-02, 1.978324e-02, 1.908662e-02, 1.841151e-02, 1.775735e-02,
105 1.712363e-02, 1.650979e-02, 1.591533e-02, 1.533973e-02, 1.478250e-02,
106 1.424314e-02, 1.372117e-02, 1.321613e-02, 1.272755e-02, 1.225498e-02,
107 1.179798e-02, 1.135611e-02, 1.092896e-02, 1.051609e-02, 1.011712e-02,
108 9.731635e-03, 9.359254e-03, 8.999595e-03, 8.652287e-03, 8.316967e-03,
109 7.993280e-03, 7.680879e-03, 7.379426e-03, 7.088591e-03, 6.808051e-03,
110 6.537491e-03, 6.276605e-03, 6.025092e-03, 5.782661e-03, 5.549027e-03,
111 5.323912e-03, 5.107045e-03, 4.898164e-03, 4.697011e-03, 4.503336e-03,
112 4.316896e-03, 4.137454e-03, 3.964780e-03, 3.798649e-03, 3.638843e-03,
113 3.485150e-03, 3.337364e-03, 3.195284e-03, 3.058715e-03, 2.927469e-03,
114 2.801361e-03, 2.680213e-03, 2.563852e-03, 2.452110e-03, 2.344824e-03
115};
116
117///////////////////////////////////////////////////////////////////////
118//
119// Constructor
120//
121
123 G4ProcessType type):G4VDiscreteProcess (processName, type),
124 LowestKineticEnergy (10.*keV),
125 theGamma (G4Gamma::Gamma() ),
126 theElectron ( G4Electron::Electron() ),
127 thePositron ( G4Positron::Positron() ),
128 fAlpha(0.0), fRootNumber(80),
129 fVerboseLevel( verboseLevel )
130{
132
133 fFieldPropagator = transportMgr->GetPropagatorInField();
135 CutInRange = GammaCutInKineticEnergyNow = ElectronCutInKineticEnergyNow =
136 PositronCutInKineticEnergyNow = ParticleCutInKineticEnergyNow = fKsi =
137 fPsiGamma = fEta = fOrderAngleK = 0.0;
138}
139
140/////////////////////////////////////////////////////////////////////////
141//
142// Destructor
143//
144
146{}
147
148
149G4bool
151{
152 return ( ( &particle == (const G4ParticleDefinition *)theElectron ) ||
153 ( &particle == (const G4ParticleDefinition *)thePositron ));
154}
155
157{
158 return fLambdaConst;
159}
160
162{
163 return fEnergyConst;
164}
165
166/////////////////////////////// METHODS /////////////////////////////////
167//
168//
169// Production of synchrotron X-ray photon
170// GEANT4 internal units.
171//
172
173
176 G4double,
178{
179 // gives the MeanFreePath in GEANT4 internal units
180 G4double MeanFreePath;
181
182 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
183 // G4Material* aMaterial = trackData.GetMaterial();
184
185 //G4bool isOutRange ;
186
188
189 G4double gamma = aDynamicParticle->GetTotalEnergy()/
190 aDynamicParticle->GetMass();
191
192 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
193
194 G4double KineticEnergy = aDynamicParticle->GetKineticEnergy();
195
196 if ( KineticEnergy < LowestKineticEnergy || gamma < 1.0e3 ) MeanFreePath = DBL_MAX;
197 else
198 {
199
200 G4ThreeVector FieldValue;
201 const G4Field* pField = nullptr;
202
203 G4FieldManager* fieldMgr=nullptr;
204 G4bool fieldExertsForce = false;
205
206 if( (particleCharge != 0.0) )
207 {
208 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
209
210 if ( fieldMgr != nullptr )
211 {
212 // If the field manager has no field, there is no field !
213
214 fieldExertsForce = ( fieldMgr->GetDetectorField() != nullptr );
215 }
216 }
217 if ( fieldExertsForce )
218 {
219 pField = fieldMgr->GetDetectorField() ;
220 G4ThreeVector globPosition = trackData.GetPosition();
221
222 G4double globPosVec[4], FieldValueVec[6];
223
224 globPosVec[0] = globPosition.x();
225 globPosVec[1] = globPosition.y();
226 globPosVec[2] = globPosition.z();
227 globPosVec[3] = trackData.GetGlobalTime();
228
229 pField->GetFieldValue( globPosVec, FieldValueVec );
230
231 FieldValue = G4ThreeVector( FieldValueVec[0],
232 FieldValueVec[1],
233 FieldValueVec[2] );
234
235
236
237 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
238 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum) ;
239 G4double perpB = unitMcrossB.mag() ;
240 G4double beta = aDynamicParticle->GetTotalMomentum()/
241 (aDynamicParticle->GetTotalEnergy() );
242
243 if( perpB > 0.0 ) MeanFreePath = fLambdaConst*beta/perpB;
244 else MeanFreePath = DBL_MAX;
245 }
246 else MeanFreePath = DBL_MAX;
247 }
248 if(fVerboseLevel > 0)
249 {
250 G4cout<<"G4SynchrotronRadiationInMat::MeanFreePath = "<<MeanFreePath/m<<" m"<<G4endl;
251 }
252 return MeanFreePath;
253}
254
255////////////////////////////////////////////////////////////////////////////////
256//
257//
258
261 const G4Step& stepData )
262
263{
264 aParticleChange.Initialize(trackData);
265
266 const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
267
268 G4double gamma = aDynamicParticle->GetTotalEnergy()/
269 (aDynamicParticle->GetMass() );
270
271 if(gamma <= 1.0e3 )
272 {
273 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
274 }
275 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
276
277 G4ThreeVector FieldValue;
278 const G4Field* pField = nullptr ;
279
280 G4FieldManager* fieldMgr=nullptr;
281 G4bool fieldExertsForce = false;
282
283 if( (particleCharge != 0.0) )
284 {
285 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
286 if ( fieldMgr != nullptr )
287 {
288 // If the field manager has no field, there is no field !
289
290 fieldExertsForce = ( fieldMgr->GetDetectorField() != nullptr );
291 }
292 }
293 if ( fieldExertsForce )
294 {
295 pField = fieldMgr->GetDetectorField() ;
296 G4ThreeVector globPosition = trackData.GetPosition() ;
297 G4double globPosVec[4], FieldValueVec[6] ;
298 globPosVec[0] = globPosition.x() ;
299 globPosVec[1] = globPosition.y() ;
300 globPosVec[2] = globPosition.z() ;
301 globPosVec[3] = trackData.GetGlobalTime();
302
303 pField->GetFieldValue( globPosVec, FieldValueVec ) ;
304 FieldValue = G4ThreeVector( FieldValueVec[0],
305 FieldValueVec[1],
306 FieldValueVec[2] );
307
308 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
309 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
310 G4double perpB = unitMcrossB.mag() ;
311 if(perpB > 0.0)
312 {
313 // M-C of synchrotron photon energy
314
315 G4double energyOfSR = GetRandomEnergySR(gamma,perpB);
316
317 if(fVerboseLevel > 0)
318 {
319 G4cout<<"SR photon energy = "<<energyOfSR/keV<<" keV"<<G4endl;
320 }
321 // check against insufficient energy
322
323 if( energyOfSR <= 0.0 )
324 {
325 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
326 }
327 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
329 particleDirection = aDynamicParticle->GetMomentumDirection();
330
331 // M-C of its direction, simplified dipole busted approach
332
333 // G4double Teta = G4UniformRand()/gamma ; // Very roughly
334
335 G4double cosTheta, sinTheta, fcos, beta;
336
337 do
338 {
339 cosTheta = 1. - 2.*G4UniformRand();
340 fcos = (1 + cosTheta*cosTheta)*0.5;
341 }
342 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
343 while( fcos < G4UniformRand() );
344
345 beta = std::sqrt(1. - 1./(gamma*gamma));
346
347 cosTheta = (cosTheta + beta)/(1. + beta*cosTheta);
348
349 if( cosTheta > 1. ) cosTheta = 1.;
350 if( cosTheta < -1. ) cosTheta = -1.;
351
352 sinTheta = std::sqrt(1. - cosTheta*cosTheta );
353
354 G4double Phi = twopi * G4UniformRand() ;
355
356 G4double dirx = sinTheta*std::cos(Phi) ,
357 diry = sinTheta*std::sin(Phi) ,
358 dirz = cosTheta;
359
360 G4ThreeVector gammaDirection ( dirx, diry, dirz);
361 gammaDirection.rotateUz(particleDirection);
362
363 // polarization of new gamma
364
365 // G4double sx = std::cos(Teta)*std::cos(Phi);
366 // G4double sy = std::cos(Teta)*std::sin(Phi);
367 // G4double sz = -std::sin(Teta);
368
369 G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection);
370 gammaPolarization = gammaPolarization.unit();
371
372 // (sx, sy, sz);
373 // gammaPolarization.rotateUz(particleDirection);
374
375 // create G4DynamicParticle object for the SR photon
376
378 gammaDirection,
379 energyOfSR );
380 aGamma->SetPolarization( gammaPolarization.x(),
381 gammaPolarization.y(),
382 gammaPolarization.z() );
383
384
387
388 // Update the incident particle
389
390 G4double newKinEnergy = kineticEnergy - energyOfSR ;
391
392 if (newKinEnergy > 0.)
393 {
394 aParticleChange.ProposeMomentumDirection( particleDirection );
395 aParticleChange.ProposeEnergy( newKinEnergy );
397 }
398 else
399 {
402 G4double charge = aDynamicParticle->GetDefinition()->GetPDGCharge();
403 if (charge<0.)
404 {
406 }
407 else
408 {
410 }
411 }
412 }
413 else
414 {
415 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
416 }
417 }
418 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
419}
420
421
424 const G4Step& )
425
426{
427 G4int i ;
428 G4double energyOfSR = -1.0 ;
429 //G4Material* aMaterial=trackData.GetMaterial() ;
430
431 const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
432
433 G4double gamma = aDynamicParticle->GetTotalEnergy()/
434 (aDynamicParticle->GetMass() ) ;
435
436 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
437
438 G4ThreeVector FieldValue;
439 const G4Field* pField = nullptr ;
440
441 G4FieldManager* fieldMgr=nullptr;
442 G4bool fieldExertsForce = false;
443
444 if( (particleCharge != 0.0) )
445 {
446 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
447 if ( fieldMgr != nullptr )
448 {
449 // If the field manager has no field, there is no field !
450
451 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
452 }
453 }
454 if ( fieldExertsForce )
455 {
456 pField = fieldMgr->GetDetectorField();
457 G4ThreeVector globPosition = trackData.GetPosition();
458 G4double globPosVec[3], FieldValueVec[3];
459
460 globPosVec[0] = globPosition.x();
461 globPosVec[1] = globPosition.y();
462 globPosVec[2] = globPosition.z();
463
464 pField->GetFieldValue( globPosVec, FieldValueVec );
465 FieldValue = G4ThreeVector( FieldValueVec[0],
466 FieldValueVec[1],
467 FieldValueVec[2] );
468
469 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
470 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum) ;
471 G4double perpB = unitMcrossB.mag();
472 if( perpB > 0.0 )
473 {
474 // M-C of synchrotron photon energy
475
476 G4double random = G4UniformRand() ;
477 for(i=0;i<200;i++)
478 {
479 if(random >= fIntegralProbabilityOfSR[i]) break ;
480 }
481 energyOfSR = 0.0001*i*i*fEnergyConst*gamma*gamma*perpB ;
482
483 // check against insufficient energy
484
485 if(energyOfSR <= 0.0)
486 {
487 return -1.0 ;
488 }
489 //G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
490 //G4ParticleMomentum
491 //particleDirection = aDynamicParticle->GetMomentumDirection();
492
493 // Gamma production cut in this material
494 //G4double
495 //gammaEnergyCut = (G4Gamma::GetCutsInEnergy())[aMaterial->GetIndex()];
496
497 // SR photon has energy more than the current material cut
498 // M-C of its direction
499
500 //G4double Teta = G4UniformRand()/gamma ; // Very roughly
501
502 //G4double Phi = twopi * G4UniformRand() ;
503 }
504 else
505 {
506 return -1.0 ;
507 }
508 }
509 return energyOfSR ;
510}
511
512/////////////////////////////////////////////////////////////////////////////////
513//
514//
515
517{
518 G4int i, iMax;
519 G4double energySR, random, position;
520
521 iMax = 200;
522 random = G4UniformRand();
523
524 for( i = 0; i < iMax; i++ )
525 {
526 if( random >= fIntegralProbabilityOfSR[i] ) break;
527 }
528 if(i <= 0 ) position = G4UniformRand(); // 0.
529 else if( i>= iMax) position = G4double(iMax);
530 else position = i + G4UniformRand(); // -1
531 //
532 // it was in initial implementation:
533 // energyOfSR = 0.0001*i*i*fEnergyConst*gamma*gamma*perpB ;
534
535 energySR = 0.0001*position*position*fEnergyConst*gamma*gamma*perpB;
536
537 if( energySR < 0. ) energySR = 0.;
538
539 return energySR;
540}
541
542/////////////////////////////////////////////////////////////////////////
543//
544// return
545
547{
548 G4double result, hypCos2, hypCos=std::cosh(t);
549
550 hypCos2 = hypCos*hypCos;
551 result = std::cosh(5.*t/3.)*std::exp(t-fKsi*hypCos); // fKsi > 0. !
552 result /= hypCos2;
553 return result;
554}
555
556///////////////////////////////////////////////////////////////////////////
557//
558// return the probability to emit SR photon with relative energy
559// energy/energy_c >= ksi
560// for ksi <= 0. P = 1., however the method works for ksi > 0 only!
561
563{
564 if (ksi <= 0.) return 1.0;
565 fKsi = ksi; // should be > 0. !
566 G4int n;
567 G4double result, a;
568
569 a = fAlpha; // always = 0.
570 n = fRootNumber; // around default = 80
571
573
574 result = integral.Laguerre(this,
576
577 result *= 3./5./pi;
578
579 return result;
580}
581
582/////////////////////////////////////////////////////////////////////////
583//
584// return an auxiliary function for K_5/3 integral representation
585
587{
588 G4double result, hypCos=std::cosh(t);
589
590 result = std::cosh(5.*t/3.)*std::exp(t - fKsi*hypCos); // fKsi > 0. !
591 result /= hypCos;
592 return result;
593}
594
595///////////////////////////////////////////////////////////////////////////
596//
597// return the probability to emit SR photon energy with relative energy
598// energy/energy_c >= ksi
599// for ksi <= 0. P = 1., however the method works for ksi > 0 only!
600
602{
603 if (ksi <= 0.) return 1.0;
604 fKsi = ksi; // should be > 0. !
605 G4int n;
606 G4double result, a;
607
608 a = fAlpha; // always = 0.
609 n = fRootNumber; // around default = 80
610
612
613 result = integral.Laguerre(this,
615
616 result *= 9.*std::sqrt(3.)*ksi/8./pi;
617
618 return result;
619}
620
621/////////////////////////////////////////////////////////////////////////////
622//
623//
624
626{
627 G4double result, hypCos=std::cosh(t);
628
629 result = std::cosh(fOrderAngleK*t)*std::exp(t - fEta*hypCos); // fEta > 0. !
630 result /= hypCos;
631 return result;
632}
633
634//////////////////////////////////////////////////////////////////////////
635//
636// Return K 1/3 or 2/3 for angular distribution
637
639{
640 fEta = eta; // should be > 0. !
641 G4int n;
642 G4double result, a;
643
644 a = fAlpha; // always = 0.
645 n = fRootNumber; // around default = 80
646
648
649 result = integral.Laguerre(this,
651
652 return result;
653}
654
655/////////////////////////////////////////////////////////////////////////
656//
657// Relative angle diff distribution for given fKsi, which is set externally
658
660{
661 G4double result, funK, funK2, gpsi2 = gpsi*gpsi;
662
663 fPsiGamma = gpsi;
664 fEta = 0.5*fKsi*(1. + gpsi2)*std::sqrt(1. + gpsi2);
665
666 fOrderAngleK = 1./3.;
667 funK = GetAngleK(fEta);
668 funK2 = funK*funK;
669
670 result = gpsi2*funK2/(1. + gpsi2);
671
672 fOrderAngleK = 2./3.;
673 funK = GetAngleK(fEta);
674 funK2 = funK*funK;
675
676 result += funK2;
677 result *= (1. + gpsi2)*fKsi;
678
679 return result;
680}
681
682
683///////////////////// end of G4SynchrotronRadiationInMat.cc
684
@ fSynchrotronRadiation
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
const G4double fAlpha
G4ProcessType
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
@ fStopButAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double fcos(G4double arg)
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double mag() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
G4double GetMass() const
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double GetTotalMomentum() const
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const G4double Point[4], G4double *fieldArr) const =0
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
G4double GetPDGCharge() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
Definition: G4Step.hh:62
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step) override
G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition) override
G4SynchrotronRadiationInMat(const G4String &processName="SynchrotronRadiation", G4ProcessType type=fElectromagnetic)
G4double GetRandomEnergySR(G4double, G4double)
G4double GetPhotonEnergy(const G4Track &trackData, const G4Step &stepData)
G4bool IsApplicable(const G4ParticleDefinition &) override
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:327
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:406
#define DBL_MAX
Definition: templates.hh:62
#define position
Definition: xmlparse.cc:622