Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UrbanAdjointMscModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4UrbanAdjointMscModel
33//
34// Author: Laszlo Urban
35//
36// Creation date: 19.02.2013
37//
38// Created from G4UrbanAdjointMscModel96
39//
40// New parametrization for theta0
41// Correction for very small step length
42//
43// Class Description:
44//
45// Implementation of the model of multiple scattering based on
46// H.W.Lewis Phys Rev 78 (1950) 526 and others
47
48// -------------------------------------------------------------------
49// In its present form the model can be used for simulation
50// of the e-/e+ multiple scattering
51//
52
53
54//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
59#include "G4SystemOfUnits.hh"
60#include "Randomize.hh"
61#include "G4Electron.hh"
62#include "G4Positron.hh"
63#include "G4LossTableManager.hh"
65
66#include "G4Poisson.hh"
67#include "G4Pow.hh"
68#include "globals.hh"
69#include "G4Log.hh"
70#include "G4Exp.hh"
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
73
74using namespace std;
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
77
79 : G4VMscModel(nam)
80{
81 masslimite = 0.6*MeV;
82 lambdalimit = 1.*mm;
83 fr = 0.02;
84 taubig = 8.0;
85 tausmall = 1.e-16;
86 taulim = 1.e-6;
87 currentTau = taulim;
88 tlimitminfix = 0.01*nm;
89 tlimitminfix2 = 1.*nm;
90 stepmin = tlimitminfix;
91 smallstep = 1.e10;
92 currentRange = 0. ;
93 rangeinit = 0.;
94 tlimit = 1.e10*mm;
95 tlimitmin = 10.*tlimitminfix;
96 tgeom = 1.e50*mm;
97 geombig = 1.e50*mm;
98 geommin = 1.e-3*mm;
99 geomlimit = geombig;
100 presafety = 0.*mm;
101
102 facsafety = 0.6;
103
104 Zold = 0.;
105 Zeff = 1.;
106 Z2 = 1.;
107 Z23 = 1.;
108 lnZ = 0.;
109 coeffth1 = 0.;
110 coeffth2 = 0.;
111 coeffc1 = 0.;
112 coeffc2 = 0.;
113 coeffc3 = 0.;
114 coeffc4 = 0.;
115 particle = 0;
116
117 positron = G4Positron::Positron();
118 theManager = G4LossTableManager::Instance();
119 rndmEngineMod = G4Random::getTheEngine();
120
121 firstStep = true;
122 insideskin = false;
123 latDisplasmentbackup = false;
124 displacementFlag = true;
125
126 rangecut = geombig;
127 drr = 0.35 ;
128 finalr = 10.*um ;
129
130 skindepth = skin*stepmin;
131
132 mass = proton_mass_c2;
133 charge = ChargeSquare = 1.0;
134 currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength
135 = zPathLength = par1 = par2 = par3 = 0;
136
137 currentMaterialIndex = -1;
138 fParticleChange = nullptr;
139 couple = nullptr;
140}
141
142//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
143
145{}
146
147//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
148
150 const G4DataVector&)
151{
152 const G4ParticleDefinition* p1 =p;
153
154 if (p->GetParticleName() =="adj_e-") p1= G4Electron::Electron();
155 // set values of some data members
156 SetParticle(p1);
157 /*
158 if(p->GetPDGMass() > MeV) {
159 G4cout << "### WARNING: G4UrbanAdjointMscModel model is used for "
160 << p->GetParticleName() << " !!! " << G4endl;
161 G4cout << "### This model should be used only for e+-"
162 << G4endl;
163 }
164 */
165 fParticleChange = GetParticleChangeForMSC(p1);
166
167 latDisplasmentbackup = latDisplasment;
168
169 //G4cout << "### G4UrbanAdjointMscModel::Initialise done!" << G4endl;
170}
171
172//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
173
175 const G4ParticleDefinition* part,
176 G4double KineticEnergy,
177 G4double AtomicNumber,G4double,
179{
180 static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
181
182 static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38.,47.,
183 50., 56., 64., 74., 79., 82. };
184
185 // corr. factors for e-/e+ lambda for T <= Tlim
186 static const G4double celectron[15][22] =
187 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
188 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
189 1.112,1.108,1.100,1.093,1.089,1.087 },
190 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
191 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
192 1.109,1.105,1.097,1.090,1.086,1.082 },
193 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
194 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
195 1.131,1.124,1.113,1.104,1.099,1.098 },
196 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
197 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
198 1.112,1.105,1.096,1.089,1.085,1.098 },
199 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
200 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
201 1.073,1.070,1.064,1.059,1.056,1.056 },
202 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
203 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
204 1.074,1.070,1.063,1.059,1.056,1.052 },
205 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
206 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
207 1.068,1.064,1.059,1.054,1.051,1.050 },
208 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
209 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
210 1.039,1.037,1.034,1.031,1.030,1.036 },
211 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
212 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
213 1.031,1.028,1.024,1.022,1.021,1.024 },
214 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
215 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
216 1.020,1.017,1.015,1.013,1.013,1.020 },
217 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
218 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
219 0.995,0.993,0.993,0.993,0.993,1.011 },
220 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
221 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
222 0.974,0.972,0.973,0.974,0.975,0.987 },
223 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
224 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
225 0.950,0.947,0.949,0.952,0.954,0.963 },
226 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
227 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
228 0.941,0.938,0.940,0.944,0.946,0.954 },
229 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
230 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
231 0.933,0.930,0.933,0.936,0.939,0.949 }};
232
233 static const G4double cpositron[15][22] = {
234 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
235 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
236 1.131,1.126,1.117,1.108,1.103,1.100 },
237 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
238 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
239 1.138,1.132,1.122,1.113,1.108,1.102 },
240 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
241 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
242 1.203,1.190,1.173,1.159,1.151,1.145 },
243 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
244 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
245 1.225,1.210,1.191,1.175,1.166,1.174 },
246 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
247 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
248 1.217,1.203,1.184,1.169,1.160,1.151 },
249 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
250 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
251 1.237,1.222,1.201,1.184,1.174,1.159 },
252 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
253 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
254 1.252,1.234,1.212,1.194,1.183,1.170 },
255 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
256 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
257 1.254,1.237,1.214,1.195,1.185,1.179 },
258 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
259 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
260 1.312,1.288,1.258,1.235,1.221,1.205 },
261 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
262 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
263 1.320,1.294,1.264,1.240,1.226,1.214 },
264 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
265 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
266 1.328,1.302,1.270,1.245,1.231,1.233 },
267 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
268 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
269 1.361,1.330,1.294,1.267,1.251,1.239 },
270 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
271 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
272 1.409,1.372,1.330,1.298,1.280,1.258 },
273 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
274 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
275 1.442,1.400,1.354,1.319,1.299,1.272 },
276 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
277 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
278 1.456,1.412,1.364,1.328,1.307,1.282 }};
279
280 //data/corrections for T > Tlim
281
282 static const G4double hecorr[15] = {
283 120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
284 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
285 -22.30};
286
287 G4double sigma;
288 SetParticle(part);
289
290 Z23 = G4Pow::GetInstance()->Z23(G4lrint(AtomicNumber));
291
292 // correction if particle .ne. e-/e+
293 // compute equivalent kinetic energy
294 // lambda depends on p*beta ....
295
296 G4double eKineticEnergy = KineticEnergy;
297
298 if(mass > electron_mass_c2)
299 {
300 G4double TAU = KineticEnergy/mass ;
301 G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
302 G4double w = c-2. ;
303 G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
304 eKineticEnergy = electron_mass_c2*tau ;
305 }
306
307 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
308 G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
309 /(eTotalEnergy*eTotalEnergy);
310 G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
311 /(electron_mass_c2*electron_mass_c2);
312
313 static const G4double epsfactor = 2.*CLHEP::electron_mass_c2*
314 CLHEP::electron_mass_c2*CLHEP::Bohr_radius*CLHEP::Bohr_radius
315 /(CLHEP::hbarc*CLHEP::hbarc);
316 G4double eps = epsfactor*bg2/Z23;
317
318 if (eps<epsmin) sigma = 2.*eps*eps;
319 else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
320 else sigma = G4Log(2.*eps)-1.+1./eps;
321
322 sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
323
324 // interpolate in AtomicNumber and beta2
325 G4double c1,c2,cc1,cc2,corr;
326
327 // get bin number in Z
328 G4int iZ = 14;
329 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
330 while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
331 if (iZ==14) iZ = 13;
332 if (iZ==-1) iZ = 0 ;
333
334 G4double ZZ1 = Zdat[iZ];
335 G4double ZZ2 = Zdat[iZ+1];
336 G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
337 ((ZZ2-ZZ1)*(ZZ2+ZZ1));
338
339 static const G4double Tlim = 10.*CLHEP::MeV;
340 static const G4double sigmafactor =
341 CLHEP::twopi*CLHEP::classic_electr_radius*CLHEP::classic_electr_radius;
342 static const G4double beta2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
343 ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHEP::electron_mass_c2));
344 static const G4double bg2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
345 (CLHEP::electron_mass_c2*CLHEP::electron_mass_c2);
346
347 static const G4double sig0[15] = {
348 0.2672*CLHEP::barn, 0.5922*CLHEP::barn, 2.653*CLHEP::barn, 6.235*CLHEP::barn,
349 11.69*CLHEP::barn , 13.24*CLHEP::barn , 16.12*CLHEP::barn, 23.00*CLHEP::barn,
350 35.13*CLHEP::barn , 39.95*CLHEP::barn , 50.85*CLHEP::barn, 67.19*CLHEP::barn,
351 91.15*CLHEP::barn , 104.4*CLHEP::barn , 113.1*CLHEP::barn};
352
353 static const G4double Tdat[22] = {
354 100*CLHEP::eV, 200*CLHEP::eV, 400*CLHEP::eV, 700*CLHEP::eV,
355 1*CLHEP::keV, 2*CLHEP::keV, 4*CLHEP::keV, 7*CLHEP::keV,
356 10*CLHEP::keV, 20*CLHEP::keV, 40*CLHEP::keV, 70*CLHEP::keV,
357 100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP::keV, 700*CLHEP::keV,
358 1*CLHEP::MeV, 2*CLHEP::MeV, 4*CLHEP::MeV, 7*CLHEP::MeV,
359 10*CLHEP::MeV, 20*CLHEP::MeV};
360
361 if(eKineticEnergy <= Tlim)
362 {
363 // get bin number in T (beta2)
364 G4int iT = 21;
365 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
366 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
367 if(iT==21) iT = 20;
368 if(iT==-1) iT = 0 ;
369
370 // calculate betasquare values
371 G4double T = Tdat[iT], E = T + electron_mass_c2;
372 G4double b2small = T*(E+electron_mass_c2)/(E*E);
373
374 T = Tdat[iT+1]; E = T + electron_mass_c2;
375 G4double b2big = T*(E+electron_mass_c2)/(E*E);
376 G4double ratb2 = (beta2-b2small)/(b2big-b2small);
377
378 if (charge < 0.)
379 {
380 c1 = celectron[iZ][iT];
381 c2 = celectron[iZ+1][iT];
382 cc1 = c1+ratZ*(c2-c1);
383
384 c1 = celectron[iZ][iT+1];
385 c2 = celectron[iZ+1][iT+1];
386 cc2 = c1+ratZ*(c2-c1);
387
388 corr = cc1+ratb2*(cc2-cc1);
389
390 sigma *= sigmafactor/corr;
391 }
392 else
393 {
394 c1 = cpositron[iZ][iT];
395 c2 = cpositron[iZ+1][iT];
396 cc1 = c1+ratZ*(c2-c1);
397
398 c1 = cpositron[iZ][iT+1];
399 c2 = cpositron[iZ+1][iT+1];
400 cc2 = c1+ratZ*(c2-c1);
401
402 corr = cc1+ratb2*(cc2-cc1);
403
404 sigma *= sigmafactor/corr;
405 }
406 }
407 else
408 {
409 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
410 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
411 if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
412 sigma = c1+ratZ*(c2-c1) ;
413 else if(AtomicNumber < ZZ1)
414 sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
415 else if(AtomicNumber > ZZ2)
416 sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
417 }
418 return sigma;
419
420}
421
422//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
423
425{ SetParticle(track->GetDynamicParticle()->GetDefinition());
426 firstStep = true;
427 insideskin = false;
428 fr = facrange;
429 tlimit = tgeom = rangeinit = rangecut = geombig;
430 smallstep = 1.e10;
431 stepmin = tlimitminfix;
432 tlimitmin = 10.*tlimitminfix;
433 rndmEngineMod = G4Random::getTheEngine();
434}
435
436//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
437
439 const G4Track& track,
440 G4double& currentMinimalStep)
441{
442 tPathLength = currentMinimalStep;
443 const G4DynamicParticle* dp = track.GetDynamicParticle();
444
445 G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
446 G4StepStatus stepStatus = sp->GetStepStatus();
447 couple = track.GetMaterialCutsCouple();
448 SetCurrentCouple(couple);
449 currentMaterialIndex = couple->GetIndex();
450 currentKinEnergy = dp->GetKineticEnergy();
451
452 currentRange = GetRange(particle,currentKinEnergy,couple);
453 lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
454 tPathLength = min(tPathLength,currentRange);
455
456
457 // set flag to default values
458 Zeff = couple->GetMaterial()->GetIonisation()->GetZeffective();
459 // couple->GetMaterial()->GetTotNbOfAtomsPerVolume();
460
461 if(Zold != Zeff)
462 UpdateCache();
463
464 // stop here if small step
465 if(tPathLength < tlimitminfix) {
466 latDisplasment = false;
467 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
468 }
469
470 // upper limit for the straight line distance the particle can travel
471 // for electrons and positrons
472 G4double distance = currentRange;
473 // for muons, hadrons
474 if(mass > masslimite) {
475 distance *= (1.15-9.76e-4*Zeff);
476 } else {
477 distance *= (1.20-Zeff*(1.62e-2-9.22e-5*Zeff));
478 }
479 presafety = sp->GetSafety();
480 /*
481 G4cout << "G4Urban::StepLimit tPathLength= "
482 <<tPathLength<<" safety= " << presafety
483 << " range= " <<currentRange<< " lambda= "<<lambda0
484 << " Alg: " << steppingAlgorithm <<G4endl;
485 */
486 // far from geometry boundary
487 if(distance < presafety)
488 {
489 latDisplasment = false;
490 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
491 }
492
493 latDisplasment = latDisplasmentbackup;
494 static const G4double invmev = 1.0/CLHEP::MeV;
495 // standard version
496 //
498 {
499 //compute geomlimit and presafety
500 geomlimit = ComputeGeomLimit(track, presafety, currentRange);
501 /*
502 G4cout << "G4Urban::Distance to boundary geomlimit= "
503 <<geomlimit<<" safety= " << presafety<<G4endl;
504 */
505
506 // is it far from boundary ?
507 if(distance < presafety)
508 {
509 latDisplasment = false;
510 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
511 }
512
513 smallstep += 1.;
514 insideskin = false;
515
516 // initialisation at firs step and at the boundary
517 if(firstStep || (stepStatus == fGeomBoundary))
518 {
519 rangeinit = currentRange;
520 if(!firstStep) { smallstep = 1.; }
521
522 //define stepmin here (it depends on lambda!)
523 //rough estimation of lambda_elastic/lambda_transport
524 G4double rat = currentKinEnergy*invmev;
525 rat = 1.e-3/(rat*(10.+rat)) ;
526 //stepmin ~ lambda_elastic
527 stepmin = rat*lambda0;
528 skindepth = skin*stepmin;
529 tlimitmin = max(10*stepmin,tlimitminfix);
530 /*
531 G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
532 << " tlimitmin= " << tlimitmin << " geomlimit= "
533 << geomlimit <<G4endl;
534 */
535 // constraint from the geometry
536
537 if((geomlimit < geombig) && (geomlimit > geommin))
538 {
539 // geomlimit is a geometrical step length
540 // transform it to true path length (estimation)
541 if((1.-geomlimit/lambda0) > 0.)
542 geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
543
544 if(stepStatus == fGeomBoundary)
545 tgeom = geomlimit/facgeom;
546 else
547 tgeom = 2.*geomlimit/facgeom;
548 }
549 else
550 tgeom = geombig;
551 }
552
553 //step limit
554 tlimit = facrange*rangeinit;
555
556 //lower limit for tlimit
557 tlimit = max(tlimit,tlimitmin);
558 tlimit = min(tlimit,tgeom);
559 /*
560 G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
561 << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
562 */
563 // shortcut
564 if((tPathLength < tlimit) && (tPathLength < presafety) &&
565 (smallstep > skin) && (tPathLength < geomlimit-0.999*skindepth))
566 {
567 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
568 }
569
570 // step reduction near to boundary
571 if(smallstep <= skin)
572 {
573 tlimit = stepmin;
574 insideskin = true;
575 }
576 else if(geomlimit < geombig)
577 {
578 if(geomlimit > skindepth)
579 {
580 tlimit = min(tlimit, geomlimit-0.999*skindepth);
581 }
582 else
583 {
584 insideskin = true;
585 tlimit = min(tlimit, stepmin);
586 }
587 }
588
589 tlimit = max(tlimit, stepmin);
590
591 // randomise if not 'small' step and step determined by msc
592 if((tlimit < tPathLength) && (smallstep > skin) && !insideskin)
593 {
594 tPathLength = min(tPathLength, Randomizetlimit());
595 }
596 else
597 {
598 tPathLength = min(tPathLength, tlimit);
599 }
600
601 }
602 // for 'normal' simulation with or without magnetic field
603 // there no small step/single scattering at boundaries
604 else if(steppingAlgorithm == fUseSafety)
605 {
606 if(stepStatus != fGeomBoundary) {
607 presafety = ComputeSafety(sp->GetPosition(),tPathLength);
608 }
609 /*
610 G4cout << "presafety= " << presafety
611 << " firstStep= " << firstStep
612 << " stepStatus= " << stepStatus
613 << G4endl;
614 */
615 // is far from boundary
616 if(distance < presafety)
617 {
618 latDisplasment = false;
619 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
620 }
621
622 if(firstStep || (stepStatus == fGeomBoundary)) {
623 rangeinit = currentRange;
624 fr = facrange;
625 // 9.1 like stepping for e+/e- only (not for muons,hadrons)
626 if(mass < masslimite)
627 {
628 rangeinit = max(rangeinit, lambda0);
629 if(lambda0 > lambdalimit) {
630 fr *= (0.75+0.25*lambda0/lambdalimit);
631 }
632 }
633 //lower limit for tlimit
634 G4double rat = currentKinEnergy*invmev;
635 rat = 1.e-3/(rat*(10 + rat)) ;
636 stepmin = lambda0*rat;
637 tlimitmin = max(10*stepmin, tlimitminfix);
638 }
639
640 //step limit
641 tlimit = max(fr*rangeinit, facsafety*presafety);
642
643 //lower limit for tlimit
644 tlimit = max(tlimit, tlimitmin);
645
646 // randomise if step determined by msc
647 if(tlimit < tPathLength)
648 {
649 tPathLength = min(tPathLength, Randomizetlimit());
650 }
651 else { tPathLength = min(tPathLength, tlimit); }
652 }
653 // new stepping mode UseSafetyPlus
655 {
656 if(stepStatus != fGeomBoundary) {
657 presafety = ComputeSafety(sp->GetPosition(),tPathLength);
658 }
659 /*
660 G4cout << "presafety= " << presafety
661 << " firstStep= " << firstStep
662 << " stepStatus= " << stepStatus
663 << G4endl;
664 */
665 // is far from boundary
666 if(distance < presafety)
667 {
668 latDisplasment = false;
669 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
670 }
671
672 if(firstStep || (stepStatus == fGeomBoundary)) {
673 rangeinit = currentRange;
674 fr = facrange;
675 rangecut = geombig;
676 if(mass < masslimite)
677 {
678 G4int index = 1;
679 if(charge > 0.) index = 2;
680 rangecut = couple->GetProductionCuts()->GetProductionCut(index);
681 if(lambda0 > lambdalimit) {
682 fr *= (0.84+0.16*lambda0/lambdalimit);
683 }
684 }
685 //lower limit for tlimit
686 G4double rat = currentKinEnergy*invmev;
687 rat = 1.e-3/(rat*(10 + rat)) ;
688 stepmin = lambda0*rat;
689 tlimitmin = max(10*stepmin, tlimitminfix);
690 }
691 //step limit
692 tlimit = max(fr*rangeinit, facsafety*presafety);
693
694 //lower limit for tlimit
695 tlimit = max(tlimit, tlimitmin);
696
697 // condition for tPathLength from drr and finalr
698 if(currentRange > finalr) {
699 G4double tmax = drr*currentRange+
700 finalr*(1.-drr)*(2.-finalr/currentRange);
701 tPathLength = min(tPathLength,tmax);
702 }
703
704 // condition safety
705 if(currentRange > rangecut) {
706 if(firstStep) {
707 tPathLength = min(tPathLength,facsafety*presafety);
708 } else if(stepStatus != fGeomBoundary && presafety > stepmin) {
709 tPathLength = min(tPathLength,presafety);
710 }
711 }
712
713 // randomise if step determined by msc
714 if(tPathLength < tlimit)
715 {
716 tPathLength = min(tPathLength, Randomizetlimit());
717 }
718 else { tPathLength = min(tPathLength, tlimit); }
719 }
720
721 // version similar to 7.1 (needed for some experiments)
722 else
723 {
724 if (stepStatus == fGeomBoundary)
725 {
726 if (currentRange > lambda0) { tlimit = facrange*currentRange; }
727 else { tlimit = facrange*lambda0; }
728
729 tlimit = max(tlimit, tlimitmin);
730 }
731 // randomise if step determined by msc
732 if(tlimit < tPathLength)
733 {
734 tPathLength = min(tPathLength, Randomizetlimit());
735 }
736 else { tPathLength = min(tPathLength, tlimit); }
737 }
738 firstStep = false;
739 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
740}
741
742//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
743
745{
746 lambdaeff = lambda0;
747 par1 = -1. ;
748 par2 = par3 = 0. ;
749
750 // this correction needed to run MSC with eIoni and eBrem inactivated
751 // and makes no harm for a normal run
752 tPathLength = std::min(tPathLength,currentRange);
753
754 // do the true -> geom transformation
755 zPathLength = tPathLength;
756
757 // z = t for very small tPathLength
758 if(tPathLength < tlimitminfix2) return zPathLength;
759
760 // VI: it is already checked
761 // if(tPathLength > currentRange)
762 // tPathLength = currentRange ;
763 /*
764 G4cout << "ComputeGeomPathLength: tpl= " << tPathLength
765 << " R= " << currentRange << " L0= " << lambda0
766 << " E= " << currentKinEnergy << " "
767 << particle->GetParticleName() << G4endl;
768 */
769 G4double tau = tPathLength/lambda0 ;
770
771 if ((tau <= tausmall) || insideskin) {
772 zPathLength = min(tPathLength, lambda0);
773
774 } else if (tPathLength < currentRange*dtrl) {
775 if(tau < taulim) zPathLength = tPathLength*(1.-0.5*tau) ;
776 else zPathLength = lambda0*(1.-G4Exp(-tau));
777
778 } else if(currentKinEnergy < mass || tPathLength == currentRange) {
779 par1 = 1./currentRange ;
780 par2 = 1./(par1*lambda0) ;
781 par3 = 1.+par2 ;
782 if(tPathLength < currentRange) {
783 zPathLength =
784 (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3);
785 } else {
786 zPathLength = 1./(par1*par3);
787 }
788
789 } else {
790 G4double rfin = max(currentRange-tPathLength, 0.01*currentRange);
791 G4double T1 = GetEnergy(particle,rfin,couple);
792 G4double lambda1 = GetTransportMeanFreePath(particle,T1);
793
794 par1 = (lambda0-lambda1)/(lambda0*tPathLength);
795 //G4cout << "par1= " << par1 << " L1= " << lambda1 << G4endl;
796 par2 = 1./(par1*lambda0);
797 par3 = 1.+par2 ;
798 zPathLength = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3);
799 }
800
801 zPathLength = min(zPathLength, lambda0);
802 //G4cout<< "zPathLength= "<< zPathLength<< " L0= " << lambda0 << G4endl;
803 return zPathLength;
804}
805
806//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
807
809{
810 // step defined other than transportation
811 if(geomStepLength == zPathLength) {
812 //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
813 // << " step= " << geomStepLength << " *** " << G4endl;
814 return tPathLength;
815 }
816
817 zPathLength = geomStepLength;
818
819 // t = z for very small step
820 if(geomStepLength < tlimitminfix2) {
821 tPathLength = geomStepLength;
822
823 // recalculation
824 } else {
825
826 G4double tlength = geomStepLength;
827 if((geomStepLength > lambda0*tausmall) && !insideskin) {
828
829 if(par1 < 0.) {
830 tlength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
831 } else {
832 if(par1*par3*geomStepLength < 1.) {
833 tlength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
834 } else {
835 tlength = currentRange;
836 }
837 }
838
839 if(tlength < geomStepLength) { tlength = geomStepLength; }
840 else if(tlength > tPathLength) { tlength = tPathLength; }
841 }
842 tPathLength = tlength;
843 }
844 //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
845 // << " step= " << geomStepLength << " &&& " << G4endl;
846
847 return tPathLength;
848}
849
850//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
851
854 G4double /*safety*/)
855{
856 fDisplacement.set(0.0,0.0,0.0);
857 G4double kineticEnergy = currentKinEnergy;
858 if (tPathLength > currentRange*dtrl) {
859 kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
860 } else {
861 kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
862 }
863
864 if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
865 (tPathLength < tausmall*lambda0)) { return fDisplacement; }
866
867 G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
868
869 // protection against 'bad' cth values
870 if(std::fabs(cth) >= 1.0) { return fDisplacement; }
871
872 /*
873 if(cth < 1.0 - 1000*tPathLength/lambda0 && cth < 0.5 &&
874 kineticEnergy > 20*MeV) {
875 G4cout << "### G4UrbanAdjointMscModel::SampleScattering for "
876 << particle->GetParticleName()
877 << " E(MeV)= " << kineticEnergy/MeV
878 << " Step(mm)= " << tPathLength/mm
879 << " in " << CurrentCouple()->GetMaterial()->GetName()
880 << " CosTheta= " << cth << G4endl;
881 }
882 */
883 G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
884 G4double phi = twopi*rndmEngineMod->flat();
885 G4double dirx = sth*cos(phi);
886 G4double diry = sth*sin(phi);
887
888 G4ThreeVector newDirection(dirx,diry,cth);
889 newDirection.rotateUz(oldDirection);
890
891 fParticleChange->ProposeMomentumDirection(newDirection);
892 /*
893 G4cout << "G4UrbanAdjointMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
894 << " sinTheta= " << sth << " safety(mm)= " << safety
895 << " trueStep(mm)= " << tPathLength
896 << " geomStep(mm)= " << zPathLength
897 << G4endl;
898 */
899
900
901 if (latDisplasment && currentTau >= tausmall) {
902 if(displacementFlag) { SampleDisplacementNew(cth, phi); }
903 else { SampleDisplacement(sth, phi); }
904 fDisplacement.rotateUz(oldDirection);
905 }
906 return fDisplacement;
907}
908
909//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
910
911G4double G4UrbanAdjointMscModel::SampleCosineTheta(G4double trueStepLength,
912 G4double KineticEnergy)
913{
914 G4double cth = 1. ;
915 G4double tau = trueStepLength/lambda0;
916 currentTau = tau;
917 lambdaeff = lambda0;
918
919 G4double lambda1 = GetTransportMeanFreePath(particle,KineticEnergy);
920 if(std::fabs(lambda1 - lambda0) > lambda0*0.01 && lambda1 > 0.)
921 {
922 // mean tau value
923 tau = trueStepLength*G4Log(lambda0/lambda1)/(lambda0-lambda1);
924 }
925
926 currentTau = tau ;
927 lambdaeff = trueStepLength/currentTau;
928 currentRadLength = couple->GetMaterial()->GetRadlen();
929
930 if (tau >= taubig) { cth = -1.+2.*rndmEngineMod->flat(); }
931 else if (tau >= tausmall) {
932 static const G4double numlim = 0.01;
933 G4double xmeanth, x2meanth;
934 if(tau < numlim) {
935 xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
936 x2meanth= 1.0 - tau*(5.0 - 6.25*tau)/3.;
937 } else {
938 xmeanth = G4Exp(-tau);
939 x2meanth = (1.+2.*G4Exp(-2.5*tau))/3.;
940 }
941
942 // too large step of low-energy particle
943 G4double relloss = 1. - KineticEnergy/currentKinEnergy;
944 static const G4double rellossmax= 0.50;
945 if(relloss > rellossmax) {
946 return SimpleScattering(xmeanth,x2meanth);
947 }
948 // is step extreme small ?
949 G4bool extremesmallstep = false ;
950 G4double tsmall = std::min(tlimitmin,lambdalimit);
951 G4double theta0 = 0.;
952 if(trueStepLength > tsmall) {
953 theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
954 } else {
955 theta0 = sqrt(trueStepLength/tsmall)*ComputeTheta0(tsmall,KineticEnergy);
956 extremesmallstep = true ;
957 }
958
959 static const G4double theta0max = CLHEP::pi/6.;
960 //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
961 // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
962
963 // protection for very small angles
964 G4double theta2 = theta0*theta0;
965
966 if(theta2 < tausmall) { return cth; }
967
968 if(theta0 > theta0max) {
969 return SimpleScattering(xmeanth,x2meanth);
970 }
971
972 G4double x = theta2*(1.0 - theta2/12.);
973 if(theta2 > numlim) {
974 G4double sth = 2*sin(0.5*theta0);
975 x = sth*sth;
976 }
977
978 // parameter for tail
979 G4double ltau= G4Log(tau);
980 G4double u = G4Exp(ltau/6.);
981 if(extremesmallstep) u = G4Exp(G4Log(tsmall/lambda0)/6.);
982 G4double xx = G4Log(lambdaeff/currentRadLength);
983 G4double xsi = coeffc1+u*(coeffc2+coeffc3*u)+coeffc4*xx;
984
985 // tail should not be too big
986 if(xsi < 1.9) {
987 /*
988 if(KineticEnergy > 20*MeV && xsi < 1.6) {
989 G4cout << "G4UrbanAdjointMscModel::SampleCosineTheta: E(GeV)= "
990 << KineticEnergy/GeV
991 << " !!** c= " << xsi
992 << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
993 << " " << couple->GetMaterial()->GetName()
994 << " tau= " << tau << G4endl;
995 }
996 */
997 xsi = 1.9;
998 }
999
1000 G4double c = xsi;
1001
1002 if(std::abs(c-3.) < 0.001) { c = 3.001; }
1003 else if(std::abs(c-2.) < 0.001) { c = 2.001; }
1004
1005 G4double c1 = c-1.;
1006
1007 G4double ea = G4Exp(-xsi);
1008 G4double eaa = 1.-ea ;
1009 G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
1010 G4double x0 = 1. - xsi*x;
1011
1012 // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
1013
1014 if(xmean1 <= 0.999*xmeanth) {
1015 return SimpleScattering(xmeanth,x2meanth);
1016 }
1017 //from continuity of derivatives
1018 G4double b = 1.+(c-xsi)*x;
1019
1020 G4double b1 = b+1.;
1021 G4double bx = c*x;
1022
1023 G4double eb1 = G4Exp(G4Log(b1)*c1);
1024 G4double ebx = G4Exp(G4Log(bx)*c1);
1025 G4double d = ebx/eb1;
1026
1027 G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
1028
1029 G4double f1x0 = ea/eaa;
1030 G4double f2x0 = c1/(c*(1. - d));
1031 G4double prob = f2x0/(f1x0+f2x0);
1032
1033 G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1034
1035 // sampling of costheta
1036 //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
1037 // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
1038 // << G4endl;
1039 if(rndmEngineMod->flat() < qprob)
1040 {
1041 G4double var = 0;
1042 if(rndmEngineMod->flat() < prob) {
1043 cth = 1.+G4Log(ea+rndmEngineMod->flat()*eaa)*x;
1044 } else {
1045 var = (1.0 - d)*rndmEngineMod->flat();
1046 if(var < numlim*d) {
1047 var /= (d*c1);
1048 cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
1049 } else {
1050 cth = 1. + x*(c - xsi - c*G4Exp(-G4Log(var + d)/c1));
1051 }
1052 }
1053 /*
1054 if(KineticEnergy > 5*GeV && cth < 0.9) {
1055 G4cout << "G4UrbanAdjointMscModel::SampleCosineTheta: E(GeV)= "
1056 << KineticEnergy/GeV
1057 << " 1-cosT= " << 1 - cth
1058 << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1059 << " tau= " << tau
1060 << " prob= " << prob << " var= " << var << G4endl;
1061 G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
1062 << " ebx= " << ebx
1063 << " c1= " << c1 << " b= " << b << " b1= " << b1
1064 << " bx= " << bx << " d= " << d
1065 << " ea= " << ea << " eaa= " << eaa << G4endl;
1066 }
1067 */
1068 }
1069 else {
1070 cth = -1.+2.*rndmEngineMod->flat();
1071 /*
1072 if(KineticEnergy > 5*GeV) {
1073 G4cout << "G4UrbanAdjointMscModel::SampleCosineTheta: E(GeV)= "
1074 << KineticEnergy/GeV
1075 << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1076 << " qprob= " << qprob << G4endl;
1077 }
1078 */
1079 }
1080 }
1081 return cth ;
1082}
1083
1084//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1085
1087 G4double KineticEnergy)
1088{
1089 // for all particles take the width of the central part
1090 // from a parametrization similar to the Highland formula
1091 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
1092 G4double invbetacp = std::sqrt((currentKinEnergy+mass)*(KineticEnergy+mass)/
1093 (currentKinEnergy*(currentKinEnergy+2.*mass)*
1094 KineticEnergy*(KineticEnergy+2.*mass)));
1095 G4double y = trueStepLength/currentRadLength;
1096
1097 if(particle == positron)
1098 {
1099 static const G4double xl= 0.6;
1100 static const G4double xh= 0.9;
1101 static const G4double e = 113.0;
1102 G4double corr;
1103
1104 G4double tau = std::sqrt(currentKinEnergy*KineticEnergy)/mass;
1105 G4double x = std::sqrt(tau*(tau+2.)/((tau+1.)*(tau+1.)));
1106 G4double a = 0.994-4.08e-3*Zeff;
1107 G4double b = 7.16+(52.6+365./Zeff)/Zeff;
1108 G4double c = 1.000-4.47e-3*Zeff;
1109 G4double d = 1.21e-3*Zeff;
1110 if(x < xl) {
1111 corr = a*(1.-G4Exp(-b*x));
1112 } else if(x > xh) {
1113 corr = c+d*G4Exp(e*(x-1.));
1114 } else {
1115 G4double yl = a*(1.-G4Exp(-b*xl));
1116 G4double yh = c+d*G4Exp(e*(xh-1.));
1117 G4double y0 = (yh-yl)/(xh-xl);
1118 G4double y1 = yl-y0*xl;
1119 corr = y0*x+y1;
1120 }
1121 //==================================================================
1122 y *= corr*(1.+Zeff*(1.84035e-4*Zeff-1.86427e-2)+0.41125);
1123 }
1124
1125 static const G4double c_highland = 13.6*CLHEP::MeV;
1126 G4double theta0 = c_highland*std::abs(charge)*std::sqrt(y)*invbetacp;
1127
1128 // correction factor from e- scattering data
1129 theta0 *= (coeffth1+coeffth2*G4Log(y));
1130 return theta0;
1131}
1132
1133//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1134
1135void G4UrbanAdjointMscModel::SampleDisplacement(G4double sth, G4double phi)
1136{
1137 G4double rmax = sqrt((tPathLength-zPathLength)*(tPathLength+zPathLength));
1138
1139 static const G4double third = 1./3.;
1140 G4double r = rmax*G4Exp(G4Log(rndmEngineMod->flat())*third);
1141 /*
1142 G4cout << "G4UrbanAdjointMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
1143 << " sinTheta= " << sth << " r(mm)= " << r
1144 << " trueStep(mm)= " << tPathLength
1145 << " geomStep(mm)= " << zPathLength
1146 << G4endl;
1147 */
1148
1149 if(r > 0.) {
1150 static const G4double kappa = 2.5;
1151 static const G4double kappami1 = 1.5;
1152
1153 G4double latcorr = 0.;
1154 if((currentTau >= tausmall) && !insideskin) {
1155 if(currentTau < taulim) {
1156 latcorr = lambdaeff*kappa*currentTau*currentTau*
1157 (1.-(kappa+1.)*currentTau*third)*third;
1158
1159 } else {
1160 G4double etau = 0.;
1161 if(currentTau < taubig) { etau = G4Exp(-currentTau); }
1162 latcorr = -kappa*currentTau;
1163 latcorr = G4Exp(latcorr)/kappami1;
1164 latcorr += 1.-kappa*etau/kappami1 ;
1165 latcorr *= 2.*lambdaeff*third;
1166 }
1167 }
1168 latcorr = std::min(latcorr, r);
1169
1170 // sample direction of lateral displacement
1171 // compute it from the lateral correlation
1172 G4double Phi = 0.;
1173 if(std::abs(r*sth) < latcorr) {
1174 Phi = twopi*rndmEngineMod->flat();
1175
1176 } else {
1177 //G4cout << "latcorr= " << latcorr << " r*sth= " << r*sth
1178 // << " ratio= " << latcorr/(r*sth) << G4endl;
1179 G4double psi = std::acos(latcorr/(r*sth));
1180 if(rndmEngineMod->flat() < 0.5) {
1181 Phi = phi+psi;
1182 } else {
1183 Phi = phi-psi;
1184 }
1185 }
1186 fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1187 }
1188}
1189
1190//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1191
1192void G4UrbanAdjointMscModel::SampleDisplacementNew(G4double , G4double phi)
1193{
1194 //sample displacement r
1195
1196 G4double rmax = sqrt((tPathLength-zPathLength)*(tPathLength+zPathLength));
1197 // u = (r/rmax)**2 , v=1-u
1198 // paramerization from ss simulation
1199 // f(u) = p0*exp(p1*log(v)-p2*v)+v*(p3+p4*v)
1200 G4double u ,v , rej;
1201 G4int count = 0;
1202
1203 static const G4double reps = 1.e-6;
1204 static const G4double rp0 = 2.2747e+4;
1205 static const G4double rp1 = 4.5980e+0;
1206 static const G4double rp2 = 1.5580e+1;
1207 static const G4double rp3 = 7.1287e-1;
1208 static const G4double rp4 =-5.7069e-1;
1209
1210 do {
1211 u = reps+(1.-2.*reps)*rndmEngineMod->flat();
1212 v = 1.-u ;
1213 rej = rp0*G4Exp(rp1*G4Log(v)-rp2*v) + v*(rp3+rp4*v);
1214 }
1215 // Loop checking, 15-Sept-2015, Vladimir Ivanchenko
1216 while (rndmEngineMod->flat() > rej && ++count < 1000);
1217 G4double r = rmax*sqrt(u);
1218
1219 if(r > 0.)
1220 {
1221 // sample Phi using lateral correlation
1222 // v = Phi-phi = acos(latcorr/(r*sth))
1223 // v has a universal distribution which can be parametrized from ss
1224 // simulation as
1225 // f(v) = 1.49e-2*exp(-v**2/(2*0.320))+2.50e-2*exp(-31.0*log(1.+6.30e-2*v))+
1226 // 1.96e-5*exp(8.42e-1*log(1.+1.45e1*v))
1227 static const G4double probv1 = 0.305533;
1228 static const G4double probv2 = 0.955176;
1229 static const G4double vhigh = 3.15;
1230 static const G4double w2v = 1./G4Exp(30.*G4Log(1. + 6.30e-2*vhigh));
1231 static const G4double w3v = 1./G4Exp(-1.842*G4Log(1. + 1.45e1*vhigh));
1232
1233 G4double Phi;
1234 G4double random = rndmEngineMod->flat();
1235 if(random < probv1) {
1236 do {
1237 v = G4RandGauss::shoot(rndmEngineMod,0.,0.320);
1238 }
1239 // Loop checking, 15-Sept-2015, Vladimir Ivanchenko
1240 while (std::abs(v) >= vhigh);
1241 Phi = phi + v;
1242
1243 } else {
1244
1245 if(random < probv2) {
1246 v = (-1.+1./G4Exp(G4Log(1.-rndmEngineMod->flat()*(1.-w2v))/30.))/6.30e-2;
1247 } else {
1248 v = (-1.+1./G4Exp(G4Log(1.-rndmEngineMod->flat()*(1.-w3v))/-1.842))/1.45e1;
1249 }
1250
1251 random = rndmEngineMod->flat();
1252 if(random < 0.5) { Phi = phi+v; }
1253 else { Phi = phi-v; }
1254 }
1255 fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1256 }
1257}
1258
1259//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
@ fUseSafety
@ fUseSafetyPlus
@ fUseDistanceToBoundary
G4StepStatus
Definition: G4StepStatus.hh:40
@ fGeomBoundary
Definition: G4StepStatus.hh:43
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
virtual double flat()=0
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetZeffective() const
static G4LossTableManager * Instance()
const G4Material * GetMaterial() const
G4ProductionCuts * GetProductionCuts() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:224
G4double GetRadlen() const
Definition: G4Material.hh:218
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
static G4Positron * Positron()
Definition: G4Positron.cc:93
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double Z23(G4int Z) const
Definition: G4Pow.hh:125
G4double GetProductionCut(G4int index) const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) override
G4UrbanAdjointMscModel(const G4String &nam="UrbanMsc")
virtual G4double ComputeTrueStepLength(G4double geomStepLength) override
virtual void StartTracking(G4Track *) override
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
virtual G4double ComputeGeomPathLength(G4double truePathLength) override
virtual G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety) override
virtual G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep) override
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:465
G4double dtrl
Definition: G4VMscModel.hh:197
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:300
G4double facrange
Definition: G4VMscModel.hh:193
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:287
G4double skin
Definition: G4VMscModel.hh:196
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:405
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=nullptr)
Definition: G4VMscModel.cc:91
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:368
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:330
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:203
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:277
G4bool latDisplasment
Definition: G4VMscModel.hh:206
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
Definition: G4VMscModel.hh:269
G4double facsafety
Definition: G4VMscModel.hh:195
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:202
G4double facgeom
Definition: G4VMscModel.hh:194
int G4lrint(double ad)
Definition: templates.hh:134