Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LFission Class Reference

#include <G4LFission.hh>

+ Inheritance diagram for G4LFission:

Public Member Functions

 G4LFission (const G4String &name="G4LFission")
 
 ~G4LFission ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Static Public Member Functions

static G4double Atomas (const G4double A, const G4double Z)
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 64 of file G4LFission.hh.

Constructor & Destructor Documentation

◆ G4LFission()

G4LFission::G4LFission ( const G4String name = "G4LFission")

Definition at line 52 of file G4LFission.cc.

54{
55 init();
56 SetMinEnergy(0.0*GeV);
58}
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
#define DBL_MAX
Definition: templates.hh:62

◆ ~G4LFission()

G4LFission::~G4LFission ( )

Definition at line 61 of file G4LFission.cc.

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4LFission::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 96 of file G4LFission.cc.

98{
100 const G4HadProjectile* aParticle = &aTrack;
101
102 G4double N = targetNucleus.GetA_asInt();
103 G4double Z = targetNucleus.GetZ_asInt();
105
106 G4double P = aParticle->GetTotalMomentum()/MeV;
107 G4double Px = aParticle->Get4Momentum().vect().x();
108 G4double Py = aParticle->Get4Momentum().vect().y();
109 G4double Pz = aParticle->Get4Momentum().vect().z();
110 G4double E = aParticle->GetTotalEnergy()/MeV;
111 G4double E0 = aParticle->GetDefinition()->GetPDGMass()/MeV;
112 G4double Q = aParticle->GetDefinition()->GetPDGCharge();
113 if (verboseLevel > 1) {
114 G4cout << "G4LFission:ApplyYourself: incident particle:" << G4endl;
115 G4cout << "P " << P << " MeV/c" << G4endl;
116 G4cout << "Px " << Px << " MeV/c" << G4endl;
117 G4cout << "Py " << Py << " MeV/c" << G4endl;
118 G4cout << "Pz " << Pz << " MeV/c" << G4endl;
119 G4cout << "E " << E << " MeV" << G4endl;
120 G4cout << "mass " << E0 << " MeV" << G4endl;
121 G4cout << "charge " << Q << G4endl;
122 }
123 // GHEISHA ADD operation to get total energy, mass, charge:
124 if (verboseLevel > 1) {
125 G4cout << "G4LFission:ApplyYourself: material:" << G4endl;
126 G4cout << "A " << N << G4endl;
127 G4cout << "Z " << Z << G4endl;
128 G4cout << "atomic mass " <<
129 Atomas(N, Z) << "MeV" << G4endl;
130 }
131 E = E + Atomas(N, Z);
132 G4double E02 = E*E - P*P;
133 E0 = std::sqrt(std::abs(E02));
134 if (E02 < 0) E0 = -E0;
135 Q = Q + Z;
136 if (verboseLevel > 1) {
137 G4cout << "G4LFission:ApplyYourself: total:" << G4endl;
138 G4cout << "E " << E << " MeV" << G4endl;
139 G4cout << "mass " << E0 << " MeV" << G4endl;
140 G4cout << "charge " << Q << G4endl;
141 }
142 Px = -Px;
143 Py = -Py;
144 Pz = -Pz;
145
146 G4double e1 = aParticle->GetKineticEnergy()/MeV;
147 if (e1 < 1.) e1 = 1.;
148
149// Average number of neutrons
150 G4double avern = 2.569 + 0.559*G4Log(e1);
151 G4bool photofission = 0; // For now
152// Take the following value if photofission is not included
153 if (!photofission) avern = 2.569 + 0.900*G4Log(e1);
154
155// Average number of gammas
156 G4double averg = 9.500 + 0.600*G4Log(e1);
157
158 G4double ran = G4RandGauss::shoot();
159// Number of neutrons
160 G4int nn = static_cast<G4int>(avern + ran*1.23 + 0.5);
161 ran = G4RandGauss::shoot();
162// Number of gammas
163 G4int ng = static_cast<G4int>(averg + ran*3. + 0.5);
164 if (nn < 1) nn = 1;
165 if (ng < 1) ng = 1;
166 G4double exn = 0.;
167 G4double exg = 0.;
168
169// Make secondary neutrons and distribute kinetic energy
170 G4DynamicParticle* aNeutron;
171 G4int i;
172 for (i = 1; i <= nn; i++) {
173 ran = G4UniformRand();
174 G4int j;
175 for (j = 1; j <= 10; j++) {
176 if (ran < spneut[j-1]) goto label12;
177 }
178 j = 10;
179 label12:
180 ran = G4UniformRand();
181 G4double ekin = (j - 1)*1. + ran;
182 exn = exn + ekin;
184 G4ParticleMomentum(1.,0.,0.),
185 ekin*MeV);
187 }
188
189// Make secondary gammas and distribute kinetic energy
190 G4DynamicParticle* aGamma;
191 for (i = 1; i <= ng; i++) {
192 ran = G4UniformRand();
193 G4double ekin = -0.87*G4Log(ran);
194 exg = exg + ekin;
196 G4ParticleMomentum(1.,0.,0.),
197 ekin*MeV);
199 }
200
201// Distribute momentum vectors and do Lorentz transformation
202
203 G4HadSecondary* theSecondary;
204
205 for (i = 1; i <= nn + ng; i++) {
206 G4double ran1 = G4UniformRand();
207 G4double ran2 = G4UniformRand();
208 G4double cost = -1. + 2.*ran1;
209 G4double sint = std::sqrt(std::abs(1. - cost*cost));
210 G4double phi = ran2*twopi;
211 // G4cout << ran1 << " " << ran2 << G4endl;
212 // G4cout << cost << " " << sint << " " << phi << G4endl;
213 theSecondary = theParticleChange.GetSecondary(i - 1);
214 G4double pp = theSecondary->GetParticle()->GetTotalMomentum()/MeV;
215 G4double px = pp*sint*std::sin(phi);
216 G4double py = pp*sint*std::cos(phi);
217 G4double pz = pp*cost;
218 // G4cout << pp << G4endl;
219 // G4cout << px << " " << py << " " << pz << G4endl;
220 G4double e = theSecondary->GetParticle()->GetTotalEnergy()/MeV;
221 G4double e0 = theSecondary->GetParticle()->GetDefinition()->GetPDGMass()/MeV;
222
223 G4double a = px*Px + py*Py + pz*Pz;
224 a = (a/(E + E0) - e)/E0;
225
226 px = px + a*Px;
227 py = py + a*Py;
228 pz = pz + a*Pz;
229 G4double p2 = px*px + py*py + pz*pz;
230 pp = std::sqrt(p2);
231 e = std::sqrt(e0*e0 + p2);
232 G4double ekin = e - theSecondary->GetParticle()->GetDefinition()->GetPDGMass()/MeV;
234 py/pp,
235 pz/pp));
236 theSecondary->GetParticle()->SetKineticEnergy(ekin*MeV);
237 }
238
239 return &theParticleChange;
240}
@ stopAndKill
G4double G4Log(G4double x)
Definition: G4Log.hh:226
G4ThreeVector G4ParticleMomentum
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
double x() const
double y() const
Hep3Vector vect() const
void SetMomentumDirection(const G4ThreeVector &aDirection)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalEnergy() const
G4double GetTotalMomentum() const
void SetKineticEnergy(G4double aEnergy)
static G4Gamma * GammaDefinition()
Definition: G4Gamma.cc:80
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
G4HadSecondary * GetSecondary(size_t i)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * GetParticle()
static G4double Atomas(const G4double A, const G4double Z)
Definition: G4LFission.cc:245
static G4Neutron * NeutronDefinition()
Definition: G4Neutron.cc:98
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetPDGCharge() const

◆ Atomas()

G4double G4LFission::Atomas ( const G4double  A,
const G4double  Z 
)
static

Definition at line 245 of file G4LFission.cc.

246{
252
253 G4int ia = static_cast<G4int>(A + 0.5);
254 if (ia < 1) return 0;
255 G4int iz = static_cast<G4int>(Z + 0.5);
256 if (iz < 0) return 0;
257 if (iz > ia) return 0;
258
259 if (ia == 1) {
260 if (iz == 0) return rmn; //neutron
261 if (iz == 1) return rmp + rmel; //Hydrogen
262 }
263 else if (ia == 2 && iz == 1) {
264 return rmd; //Deuteron
265 }
266 else if (ia == 4 && iz == 2) {
267 return rma; //Alpha
268 }
269
271 G4double mass = (A - Z)*rmn + Z*rmp + Z*rmel - 15.67*A
272 + 17.23*Pow->A23(A)
273 + 93.15*(A/2. - Z)*(A/2. - Z)/A
274 + 0.6984523*Z*Z/Pow->A13(A);
275 G4int ipp = (ia - iz)%2;
276 G4int izz = iz%2;
277 if (ipp == izz) mass = mass + (ipp + izz -1)*12.*Pow->powA(A, -0.5);
278
279 return mass;
280}
double A(double temperature)
static G4Alpha * AlphaDefinition()
Definition: G4Alpha.cc:83
static G4Deuteron * DeuteronDefinition()
Definition: G4Deuteron.cc:88
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:120
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
G4double A23(G4double A) const
Definition: G4Pow.hh:131
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:87

Referenced by ApplyYourself().

◆ GetFatalEnergyCheckLevels()

const std::pair< G4double, G4double > G4LFission::GetFatalEnergyCheckLevels ( ) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 282 of file G4LFission.cc.

283{
284 // max energy non-conservation is mass of heavy nucleus
285 return std::pair<G4double, G4double>(5*perCent,250*GeV);
286}

◆ ModelDescription()

void G4LFission::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 67 of file G4LFission.cc.

68{
69 outFile << "G4LFission is one of the Low Energy Parameterized\n"
70 << "(LEP) models used to implement neutron-induced fission of\n"
71 << "nuclei. It is a re-engineered version of the GHEISHA code\n"
72 << "of H. Fesefeldt which emits neutrons and gammas but no\n"
73 << "nuclear fragments. The model is applicable to all incident\n"
74 << "neutron energies.\n";
75}

The documentation for this class was generated from the following files: