Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BetaPlusDecay.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26////////////////////////////////////////////////////////////////////////////////
27// //
28// File: G4BetaPlusDecay.cc //
29// Author: D.H. Wright (SLAC) //
30// Date: 14 November 2014 //
31// //
32////////////////////////////////////////////////////////////////////////////////
33
34#include "G4BetaPlusDecay.hh"
36#include "G4IonTable.hh"
37#include "G4ThreeVector.hh"
38#include "G4DynamicParticle.hh"
39#include "G4DecayProducts.hh"
41#include "G4SystemOfUnits.hh"
42#include <iostream>
43#include <iomanip>
44
46 const G4double& branch, const G4double& e0,
47 const G4double& excitationE,
48 const G4Ions::G4FloatLevelBase& flb,
49 const G4BetaDecayType& betaType)
50 : G4NuclearDecay("beta+ decay", BetaPlus, excitationE, flb),
51 endpointEnergy(e0 - 2.*CLHEP::electron_mass_c2)
52{
53 SetParent(theParentNucleus); // Store name of parent nucleus, delete G4MT_parent
54 SetBR(branch);
55
57 G4IonTable* theIonTable =
59 G4int daughterZ = theParentNucleus->GetAtomicNumber() - 1;
60 G4int daughterA = theParentNucleus->GetAtomicMass();
61 SetDaughter(0, theIonTable->GetIon(daughterZ, daughterA, excitationE, flb) );
62 SetUpBetaSpectrumSampler(daughterZ, daughterA, betaType);
63 SetDaughter(1, "e+");
64 SetDaughter(2, "nu_e");
65}
66
67
69{
70 delete spectrumSampler;
71}
72
73
75{
76 // Fill G4MT_parent with theParentNucleus (stored by SetParent in ctor)
78
79 // Fill G4MT_daughters with e-, nu and residual nucleus (stored by SetDaughter)
81
82 G4double parentMass = G4MT_parent->GetPDGMass();
84 G4double nucleusMass = G4MT_daughters[0]->GetPDGMass();
85 // Set up final state
86 // parentParticle is set at rest here because boost with correct momentum
87 // is done later
88 G4DynamicParticle parentParticle(G4MT_parent, G4ThreeVector(0,0,0), 0.0);
89 G4DecayProducts* products = new G4DecayProducts(parentParticle);
90
91 if (spectrumSampler) {
92 // Generate positron isotropic in angle, with energy from stored spectrum
93 G4double eKE = endpointEnergy*spectrumSampler->shoot(G4Random::getTheEngine() );
94 G4double eMomentum = std::sqrt(eKE*(eKE + 2.*eMass) );
95
96 G4double cosTheta = 2.*G4UniformRand() - 1.0;
97 G4double sinTheta = std::sqrt(1.0 - cosTheta*cosTheta);
98 G4double phi = twopi*G4UniformRand()*rad;
99 G4double sinPhi = std::sin(phi);
100 G4double cosPhi = std::cos(phi);
101
102 G4ParticleMomentum eDirection(sinTheta*cosPhi, sinTheta*sinPhi, cosTheta);
103 G4DynamicParticle* dynamicPositron
104 = new G4DynamicParticle(G4MT_daughters[1], eDirection*eMomentum);
105 products->PushProducts(dynamicPositron);
106
107 // Generate neutrino with angle relative to positron, and energy from
108 // energy-momentum conservation using endpoint energy of reaction
109 G4double cosThetaENu = 2.*G4UniformRand() - 1.;
110 G4double eTE = eMass + eKE;
111 G4double nuEnergy = ((endpointEnergy - eKE)*(parentMass + nucleusMass - eTE)
112 - eMomentum*eMomentum)/(parentMass - eTE + eMomentum*cosThetaENu)/2.;
113
114 G4double sinThetaENu = std::sqrt(1.0 - cosThetaENu*cosThetaENu);
115 phi = twopi*G4UniformRand()*rad;
116 G4double sinPhiNu = std::sin(phi);
117 G4double cosPhiNu = std::cos(phi);
118
119 G4ParticleMomentum nuDirection;
120 nuDirection.setX(sinThetaENu*cosPhiNu*cosTheta*cosPhi -
121 sinThetaENu*sinPhiNu*sinPhi + cosThetaENu*sinTheta*cosPhi);
122 nuDirection.setY(sinThetaENu*cosPhiNu*cosTheta*sinPhi +
123 sinThetaENu*sinPhiNu*cosPhi + cosThetaENu*sinTheta*sinPhi);
124 nuDirection.setZ(-sinThetaENu*cosPhiNu*sinTheta + cosThetaENu*cosTheta);
125
126 G4DynamicParticle* dynamicNeutrino
127 = new G4DynamicParticle(G4MT_daughters[2], nuDirection*nuEnergy);
128 products->PushProducts(dynamicNeutrino);
129
130 // Generate daughter nucleus from sum of positron and neutrino 4-vectors:
131 // p_D = - p_e - p_nu
132 G4DynamicParticle* dynamicDaughter =
134 -eDirection*eMomentum - nuDirection*nuEnergy);
135 products->PushProducts(dynamicDaughter);
136
137 } else {
138 // positron energy below threshold -> no decay
139 G4DynamicParticle* noDecay =
141 products->PushProducts(noDecay);
142 }
143
144 // Check energy conservation against endpoint value, not nuclear masses
145 /*
146 G4int nProd = products->entries();
147 G4DynamicParticle* temp = 0;
148 G4double Esum = 0.0;
149 for (G4int i = 0; i < nProd; i++) {
150 temp = products->operator[](i);
151 Esum += temp->GetKineticEnergy();
152 }
153 G4double eCons = (endpointEnergy - Esum)/keV;
154 if (eCons > 0.001) G4cout << " Beta+ check: eCons (keV) = " << eCons << G4endl;
155 */
156 return products;
157}
158
159
160void
161G4BetaPlusDecay::SetUpBetaSpectrumSampler(const G4int& daughterZ,
162 const G4int& daughterA,
163 const G4BetaDecayType& betaType)
164{
165 G4double e0 = endpointEnergy/CLHEP::electron_mass_c2;
166 G4BetaDecayCorrections corrections(-daughterZ, daughterA);
167 spectrumSampler = 0;
168
169 // Check for cases in which Q < 2Me (e.g. z67.a162)
170 if (e0 > 0.) {
171 // Array to store spectrum pdf
172 G4int npti = 100;
173 G4double* pdf = new G4double[npti];
174
175 G4double e; // Total positron energy in units of electron mass
176 G4double p; // Positron momentum in units of electron mass
177 G4double f; // Spectral shap function
178 for (G4int ptn = 0; ptn < npti; ptn++) {
179 // Calculate simple phase space
180 e = 1. + e0*(ptn + 0.5)/G4double(npti);
181 p = std::sqrt(e*e - 1.);
182 f = p*e*(e0 - e + 1.)*(e0 - e + 1.);
183
184 // Apply Fermi factor to get allowed shape
185 f *= corrections.FermiFunction(e);
186
187 // Apply shape factor for forbidden transitions
188 f *= corrections.ShapeFactor(betaType, p, e0-e+1.);
189 pdf[ptn] = f;
190 }
191 spectrumSampler = new G4RandGeneral(pdf, npti);
192 delete[] pdf;
193 }
194}
195
196
198{
199 G4cout << " G4BetaPlusDecay for parent nucleus " << GetParentName() << G4endl;
200 G4cout << " decays to " << GetDaughterName(0) << " , " << GetDaughterName(1)
201 << " and " << GetDaughterName(2) << " with branching ratio " << GetBR()
202 << "% and endpoint energy " << endpointEnergy/keV << " keV " << G4endl;
203}
204
G4BetaDecayType
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
#define G4RandGeneral
Definition: Randomize.hh:49
void setY(double)
void setZ(double)
void setX(double)
virtual G4DecayProducts * DecayIt(G4double)
G4BetaPlusDecay(const G4ParticleDefinition *theParentNucleus, const G4double &theBR, const G4double &endpointE, const G4double &ex, const G4Ions::G4FloatLevelBase &flb, const G4BetaDecayType &type)
virtual void DumpNuclearInfo()
virtual ~G4BetaPlusDecay()
G4int PushProducts(G4DynamicParticle *aParticle)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
G4FloatLevelBase
Definition: G4Ions.hh:83
G4int GetAtomicNumber() const
G4int GetAtomicMass() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
G4ParticleDefinition ** G4MT_daughters
G4double GetBR() const
const G4String & GetParentName() const
void SetBR(G4double value)
void SetNumberOfDaughters(G4int value)
G4ParticleDefinition * G4MT_parent
void CheckAndFillDaughters()
void SetDaughter(G4int anIndex, const G4ParticleDefinition *particle_type)
const G4String & GetDaughterName(G4int anIndex) const
void SetParent(const G4ParticleDefinition *particle_type)
Definition: DoubConv.h:17