Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsAntiBaryonElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsAntiBaryonElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
32//
33//
34// -------------------------------------------------------------------------------
35// Short description: Interaction cross-sections for the elastic process.
36// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37// -------------------------------------------------------------------------------
38
39
41#include "G4SystemOfUnits.hh"
42#include "G4DynamicParticle.hh"
44#include "G4AntiProton.hh"
45#include "G4Nucleus.hh"
46#include "G4ParticleTable.hh"
47#include "G4NucleiProperties.hh"
48#include "G4IonTable.hh"
49#include "G4Log.hh"
50#include "G4Exp.hh"
51#include "G4Pow.hh"
52
53// factory
55//
57
59{
60 lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
61 lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
62 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
63 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
64 lastSIG=0.; //Last calculated cross section (L)
65 lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
66 lastTM=0.; //Last t_maximum (L)
67 theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
68 theS1=0.; //TheLastMantissa of 1st difrMax(L)
69 theB1=0.; //TheLastSlope of 1st difructMax(L)
70 theS2=0.; //TheLastMantissa of 2nd difrMax(L)
71 theB2=0.; //TheLastSlope of 2nd difructMax(L)
72 theS3=0.; //TheLastMantissa of 3d difr.Max(L)
73 theB3=0.; //TheLastSlope of 3d difruct.Max(L)
74 theS4=0.; //TheLastMantissa of 4th difrMax(L)
75 theB4=0.; //TheLastSlope of 4th difructMax(L)
76 lastTZ=0; // Last atomic number of the target
77 lastTN=0; // Last # of neutrons in the target
78 lastPIN=0.; // Last initialized max momentum
79 lastCST=0; // Elastic cross-section table
80 lastPAR=0; // ParametersForFunctionCalculation
81 lastSST=0; // E-dep ofSqardSlope of 1st difMax
82 lastS1T=0; // E-dep of mantissa of 1st dif.Max
83 lastB1T=0; // E-dep of the slope of 1st difMax
84 lastS2T=0; // E-dep of mantissa of 2nd difrMax
85 lastB2T=0; // E-dep of the slope of 2nd difMax
86 lastS3T=0; // E-dep of mantissa of 3d difr.Max
87 lastB3T=0; // E-dep of the slope of 3d difrMax
88 lastS4T=0; // E-dep of mantissa of 4th difrMax
89 lastB4T=0; // E-dep of the slope of 4th difMax
90 lastN=0; // The last N of calculated nucleus
91 lastZ=0; // The last Z of calculated nucleus
92 lastP=0.; // LastUsed inCrossSection Momentum
93 lastTH=0.; // Last threshold momentum
94 lastCS=0.; // Last value of the Cross Section
95 lastI=0; // The last position in the DAMDB
96}
97
99{
100 std::vector<G4double*>::iterator pos;
101 for (pos=CST.begin(); pos<CST.end(); pos++)
102 { delete [] *pos; }
103 CST.clear();
104 for (pos=PAR.begin(); pos<PAR.end(); pos++)
105 { delete [] *pos; }
106 PAR.clear();
107 for (pos=SST.begin(); pos<SST.end(); pos++)
108 { delete [] *pos; }
109 SST.clear();
110 for (pos=S1T.begin(); pos<S1T.end(); pos++)
111 { delete [] *pos; }
112 S1T.clear();
113 for (pos=B1T.begin(); pos<B1T.end(); pos++)
114 { delete [] *pos; }
115 B1T.clear();
116 for (pos=S2T.begin(); pos<S2T.end(); pos++)
117 { delete [] *pos; }
118 S2T.clear();
119 for (pos=B2T.begin(); pos<B2T.end(); pos++)
120 { delete [] *pos; }
121 B2T.clear();
122 for (pos=S3T.begin(); pos<S3T.end(); pos++)
123 { delete [] *pos; }
124 S3T.clear();
125 for (pos=B3T.begin(); pos<B3T.end(); pos++)
126 { delete [] *pos; }
127 B3T.clear();
128 for (pos=S4T.begin(); pos<S4T.end(); pos++)
129 { delete [] *pos; }
130 S4T.clear();
131 for (pos=B4T.begin(); pos<B4T.end(); pos++)
132 { delete [] *pos; }
133 B4T.clear();
134}
135
136void
138{
139 outFile << "G4ChipsAntiBaryonElasticXS provides the elastic cross\n"
140 << "section for anti-baryon nucleus scattering as a function of incident\n"
141 << "momentum. The cross section is calculated using M. Kossov's\n"
142 << "CHIPS parameterization of cross section data.\n";
143}
144
146 const G4Element*,
147 const G4Material*)
148{
149
150 /*
151 if(particle == G4AntiNeutron::AntiNeutron())
152 {
153 return true;
154 }
155 else if(particle == G4AntiProton::AntiProton())
156 {
157 return true;
158 }
159 else if(particle == G4AntiLambda::AntiLambda())
160 {
161 return true;
162 }
163 else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
164 {
165 return true;
166 }
167 else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
168 {
169 return true;
170 }
171 else if(particle == G4AntiSigmaZero::AntiSigmaZero())
172 {
173 return true;
174 }
175 else if(particle == G4AntiXiMinus::AntiXiMinus())
176 {
177 return true;
178 }
179 else if(particle == G4AntiXiZero::AntiXiZero())
180 {
181 return true;
182 }
183 else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
184 {
185 return true;
186 }
187 */
188 return true;
189}
190
191// The main member function giving the collision cross section (P is in IU, CS is in mb)
192// Make pMom in independent units ! (Now it is MeV)
194 const G4Isotope*,
195 const G4Element*,
196 const G4Material*)
197{
198 G4double pMom=Pt->GetTotalMomentum();
199 G4int tgN = A - tgZ;
200 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
201
202 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
203}
204
206{
207 G4bool fCS = false;
208
209 G4double pEn=pMom;
210 onlyCS=fCS;
211
212 G4bool in=false; // By default the isotope must be found in the AMDB
213 lastP = 0.; // New momentum history (nothing to compare with)
214 lastN = tgN; // The last N of the calculated nucleus
215 lastZ = tgZ; // The last Z of the calculated nucleus
216 lastI = colN.size(); // Size of the Associative Memory DB in the heap
217 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
218 { // The nucleus with projPDG is found in AMDB
219 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
220 {
221 lastI=i;
222 lastTH =colTH[i]; // Last THreshold (A-dependent)
223 if(pEn<=lastTH)
224 {
225 return 0.; // Energy is below the Threshold value
226 }
227 lastP =colP [i]; // Last Momentum (A-dependent)
228 lastCS =colCS[i]; // Last CrossSect (A-dependent)
229 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
230 if(lastP == pMom) // Do not recalculate
231 {
232 CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
233 return lastCS*millibarn; // Use theLastCS
234 }
235 in = true; // This is the case when the isotop is found in DB
236 // Momentum pMom is in IU ! @@ Units
237 lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
238 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
239 {
240 lastTH=pEn;
241 }
242 break; // Go out of the LOOP with found lastI
243 }
244 } // End of attampt to find the nucleus in DB
245 if(!in) // This nucleus has not been calculated previously
246 {
247 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
248 lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
249 if(lastCS<=0.)
250 {
251 lastTH = 0; // ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
252 if(pEn>lastTH)
253 {
254 lastTH=pEn;
255 }
256 }
257 colN.push_back(tgN);
258 colZ.push_back(tgZ);
259 colP.push_back(pMom);
260 colTH.push_back(lastTH);
261 colCS.push_back(lastCS);
262 return lastCS*millibarn;
263 } // End of creation of the new set of parameters
264 else
265 {
266 colP[lastI]=pMom;
267 colCS[lastI]=lastCS;
268 }
269 return lastCS*millibarn;
270}
271
272// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
273// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
274G4double G4ChipsAntiBaryonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
275 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
276{
277 G4double pMom=pIU/GeV; // All calculations are in GeV
278 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
279 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation
280 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
281 {
282 if(F<0) // the AMDB must be loded
283 {
284 lastPIN = PIN[I]; // Max log(P) initialised for this table set
285 lastPAR = PAR[I]; // Pointer to the parameter set
286 lastCST = CST[I]; // Pointer to the total sross-section table
287 lastSST = SST[I]; // Pointer to the first squared slope
288 lastS1T = S1T[I]; // Pointer to the first mantissa
289 lastB1T = B1T[I]; // Pointer to the first slope
290 lastS2T = S2T[I]; // Pointer to the second mantissa
291 lastB2T = B2T[I]; // Pointer to the second slope
292 lastS3T = S3T[I]; // Pointer to the third mantissa
293 lastB3T = B3T[I]; // Pointer to the rhird slope
294 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
295 lastB4T = B4T[I]; // Pointer to the 4-th slope
296 }
297 if(lastLP>lastPIN && lastLP<lPMax)
298 {
299 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
300 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
301 }
302 }
303 else // This isotope wasn't initialized => CREATE
304 {
305 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
306 lastPAR[nLast]=0; // Initialization for VALGRIND
307 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
308 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
309 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
310 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
311 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
312 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
313 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
314 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
315 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
316 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
317 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
318 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
319 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
320 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
321 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
322 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
323 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
324 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
325 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
326 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
327 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
328 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
329 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
330 } // End of creation/update of the new set of parameters and tables
331 // =---------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
332 if(lastLP>lastPIN && lastLP<lPMax)
333 {
334 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
335 }
336 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
337 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
338 {
339 if(lastLP==lastPIN)
340 {
341 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
342 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
343 if(blast<0 || blast>=nLast) G4cout<<"G4QaBarElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
344 lastSIG = lastCST[blast];
345 if(!onlyCS) // Skip the differential cross-section parameters
346 {
347 theSS = lastSST[blast];
348 theS1 = lastS1T[blast];
349 theB1 = lastB1T[blast];
350 theS2 = lastS2T[blast];
351 theB2 = lastB2T[blast];
352 theS3 = lastS3T[blast];
353 theB3 = lastB3T[blast];
354 theS4 = lastS4T[blast];
355 theB4 = lastB4T[blast];
356 }
357 }
358 else
359 {
360 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
361 G4int blast=static_cast<int>(shift); // the lower bin number
362 if(blast<0) blast=0;
363 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
364 shift-=blast; // step inside the unit bin
365 G4int lastL=blast+1; // the upper bin number
366 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
367 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
368 if(!onlyCS) // Skip the differential cross-section parameters
369 {
370 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
371 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
372 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
373 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
374 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
375 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
376 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
377 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
378 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
379 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
380 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
381 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
382 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
383 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
384 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
385 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
386 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
387 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
388 }
389 }
390 }
391 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
392 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
393 return lastSIG;
394}
395
396// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
397G4double G4ChipsAntiBaryonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
398 G4int tgZ, G4int tgN)
399{
400 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
401 static const G4double pwd=2727;
402 const G4int n_appel=30; // #of parameters for app-elastic (<nPoints=128)
403 // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13--14-
404 G4double app_el[n_appel]={1.25,3.5,80.,1.,.0557,6.72,5.,74.,3.,3.4,.2,.17,.001,8.,.055,
405 3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,
406 1.e10,1.1,3.4e6,6.8e6,0.};
407 // -15- -16- -17- -18- -19- -20- -21- -22- -23- -24-
408 // -25- -26- -27- -28- -29-
409 //AR-24Jun2014 if(PDG>-3334 && PDG<-1111)
410 if(PDG>-3335 && PDG<-1111)
411 {
412 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
413 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
414 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
415 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
416 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
417 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
418 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
419 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
420 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
421 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
422 //
423 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
424 {
425 if ( tgZ == 1 && tgN == 0 )
426 {
427 for (G4int ip=0; ip<n_appel; ip++) lastPAR[ip]=app_el[ip]; // PiMinus+P
428 }
429 else
430 {
431 G4double a=tgZ+tgN;
432 G4double sa=std::sqrt(a);
433 G4double ssa=std::sqrt(sa);
434 G4double asa=a*sa;
435 G4double a2=a*a;
436 G4double a3=a2*a;
437 G4double a4=a3*a;
438 G4double a5=a4*a;
439 G4double a6=a4*a2;
440 G4double a7=a6*a;
441 G4double a8=a7*a;
442 G4double a9=a8*a;
443 G4double a10=a5*a5;
444 G4double a12=a6*a6;
445 G4double a14=a7*a7;
446 G4double a16=a8*a8;
447 G4double a17=a16*a;
448 //G4double a20=a16*a4;
449 G4double a32=a16*a16;
450 // Reaction cross-section parameters (pel=peh_fit.f)
451 lastPAR[0]=.23*asa/(1.+a*.15); // p1
452 lastPAR[1]=2.8*asa/(1.+a*(.015+.05/ssa)); // p2
453 lastPAR[2]=15.*a/(1.+.005*a2); // p3
454 lastPAR[3]=.013*a2/(1.+a3*(.006+a*.00001)); // p4
455 lastPAR[4]=5.; // p5
456 lastPAR[5]=0.; // p6 not used
457 lastPAR[6]=0.; // p7 not used
458 lastPAR[7]=0.; // p8 not used
459 lastPAR[8]=0.; // p9 not used
460 // @@ the differential cross-section is parameterized separately for A>6 & A<7
461 if(a<6.5)
462 {
463 G4double a28=a16*a12;
464 // The main pre-exponent (pel_sg)
465 lastPAR[ 9]=4000*a; // p1
466 lastPAR[10]=1.2e7*a8+380*a17; // p2
467 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
468 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
469 lastPAR[13]=.28*a; // p5
470 lastPAR[14]=1.2*a2+2.3; // p6
471 lastPAR[15]=3.8/a; // p7
472 // The main slope (pel_sl)
473 lastPAR[16]=.01/(1.+.0024*a5); // p1
474 lastPAR[17]=.2*a; // p2
475 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
476 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
477 // The main quadratic (pel_sh)
478 lastPAR[20]=2.25*a3; // p1
479 lastPAR[21]=18.; // p2
480 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
481 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
482 // The 1st max pre-exponent (pel_qq)
483 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
484 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
485 lastPAR[26]=.0006*a3; // p3
486 // The 1st max slope (pel_qs)
487 lastPAR[27]=10.+4.e-8*a12*a; // p1
488 lastPAR[28]=.114; // p2
489 lastPAR[29]=.003; // p3
490 lastPAR[30]=2.e-23; // p4
491 // The effective pre-exponent (pel_ss)
492 lastPAR[31]=1./(1.+.0001*a8); // p1
493 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
494 lastPAR[33]=.03; // p3
495 // The effective slope (pel_sb)
496 lastPAR[34]=a/2; // p1
497 lastPAR[35]=2.e-7*a4; // p2
498 lastPAR[36]=4.; // p3
499 lastPAR[37]=64./a3; // p4
500 // The gloria pre-exponent (pel_us)
501 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1
502 lastPAR[39]=20.*G4Exp(.45*asa); // p2
503 lastPAR[40]=7.e3+2.4e6/a5; // p3
504 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4
505 lastPAR[42]=2.5*a; // p5
506 // The gloria slope (pel_ub)
507 lastPAR[43]=920.+.03*a8*a3; // p1
508 lastPAR[44]=93.+.0023*a12; // p2
509 }
510 else // A > Li6 (li7, ...)
511 {
512 G4double p1a10=2.2e-28*a10;
513 G4double r4a16=6.e14/a16;
514 G4double s4a16=r4a16*r4a16;
515 // a24
516 // a36
517 // The main pre-exponent (peh_sg)
518 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1
519 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2
520 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
521 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
522 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
523 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
524 // The main slope (peh_sl)
525 lastPAR[15]=400./a12+2.e-22*a9; // p1
526 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
527 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
528 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
529 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
530 lastPAR[20]=9.+100./a; // p6
531 // The main quadratic (peh_sh)
532 lastPAR[21]=.002*a3+3.e7/a6; // p1
533 lastPAR[22]=7.e-15*a4*asa; // p2
534 lastPAR[23]=9000./a4; // p3
535 // The 1st max pre-exponent (peh_qq)
536 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
537 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
538 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
539 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
540 // The 1st max slope (peh_qs)
541 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
542 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2
543 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
544 lastPAR[31]=100./asa; // p4
545 // The 2nd max pre-exponent (peh_ss)
546 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
547 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
548 lastPAR[34]=1.3+3.e5/a4; // p3
549 lastPAR[35]=500./(a2+50.)+3; // p4
550 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
551 // The 2nd max slope (peh_sb)
552 lastPAR[37]=.4*asa+3.e-9*a6; // p1
553 lastPAR[38]=.0005*a5; // p2
554 lastPAR[39]=.002*a5; // p3
555 lastPAR[40]=10.; // p4
556 // The effective pre-exponent (peh_us)
557 lastPAR[41]=.05+.005*a; // p1
558 lastPAR[42]=7.e-8/sa; // p2
559 lastPAR[43]=.8*sa; // p3
560 lastPAR[44]=.02*sa; // p4
561 lastPAR[45]=1.e8/a3; // p5
562 lastPAR[46]=3.e32/(a32+1.e32); // p6
563 // The effective slope (peh_ub)
564 lastPAR[47]=24.; // p1
565 lastPAR[48]=20./sa; // p2
566 lastPAR[49]=7.e3*a/(sa+1.); // p3
567 lastPAR[50]=900.*sa/(1.+500./a3); // p4
568 }
569 // Parameter for lowEnergyNeutrons
570 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
571 }
572 lastPAR[nLast]=pwd;
573 // and initialize the zero element of the table
574 G4double lp=lPMin; // ln(momentum)
575 G4bool memCS=onlyCS; // ??
576 onlyCS=false;
577 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
578 onlyCS=memCS;
579 lastSST[0]=theSS;
580 lastS1T[0]=theS1;
581 lastB1T[0]=theB1;
582 lastS2T[0]=theS2;
583 lastB2T[0]=theB2;
584 lastS3T[0]=theS3;
585 lastB3T[0]=theB3;
586 lastS4T[0]=theS4;
587 lastB4T[0]=theB4;
588 }
589 if(LP>ILP)
590 {
591 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
592 if(ini<0) ini=0;
593 if(ini<nPoints)
594 {
595 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
596 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
597 if(fin>=ini)
598 {
599 G4double lp=0.;
600 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
601 {
602 lp=lPMin+ip*dlnP; // ln(momentum)
603 G4bool memCS=onlyCS;
604 onlyCS=false;
605 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
606 onlyCS=memCS;
607 lastSST[ip]=theSS;
608 lastS1T[ip]=theS1;
609 lastB1T[ip]=theB1;
610 lastS2T[ip]=theS2;
611 lastB2T[ip]=theB2;
612 lastS3T[ip]=theS3;
613 lastB3T[ip]=theB3;
614 lastS4T[ip]=theS4;
615 lastB4T[ip]=theB4;
616 }
617 return lp;
618 }
619 else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
620 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
621 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
622 }
623 else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
624 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
625 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
626 }
627 }
628 else
629 {
630 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
631 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
632 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetPTables:onlyaBA implemented");
634 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
635 << ", while it is defined only for Anti Baryons" << G4endl;
636 G4Exception("G4ChipsAntiBaryonElasticXS::GetPTables()", "HAD_CHPS_0000",
637 FatalException, ed);
638 }
639 return ILP;
640}
641
642// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
644{
645 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
646 static const G4double third=1./3.;
647 static const G4double fifth=1./5.;
648 static const G4double sevth=1./7.;
649
650 if(PDG<-3334 || PDG>-1111)G4cout<<"*Warning*G4QAntiBaryonElCS::GetExT:PDG="<<PDG<<G4endl;
651 if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetExchanT:onlyCS=1"<<G4endl;
652 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
653 G4double q2=0.;
654 if(tgZ==1 && tgN==0) // ===> p+p=p+p
655 {
656 G4double E1=lastTM*theB1;
657 G4double R1=(1.-G4Exp(-E1));
658 G4double E2=lastTM*theB2;
659 G4double R2=(1.-G4Exp(-E2*E2*E2));
660 G4double E3=lastTM*theB3;
661 G4double R3=(1.-G4Exp(-E3));
662 G4double I1=R1*theS1/theB1;
663 G4double I2=R2*theS2;
664 G4double I3=R3*theS3;
665 G4double I12=I1+I2;
666 G4double rand=(I12+I3)*G4UniformRand();
667 if (rand<I1 )
668 {
669 G4double ran=R1*G4UniformRand();
670 if(ran>1.) ran=1.;
671 q2=-G4Log(1.-ran)/theB1;
672 }
673 else if(rand<I12)
674 {
675 G4double ran=R2*G4UniformRand();
676 if(ran>1.) ran=1.;
677 q2=-G4Log(1.-ran);
678 if(q2<0.) q2=0.;
679 q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
680 }
681 else
682 {
683 G4double ran=R3*G4UniformRand();
684 if(ran>1.) ran=1.;
685 q2=-G4Log(1.-ran)/theB3;
686 }
687 }
688 else
689 {
690 G4double a=tgZ+tgN;
691 G4double E1=lastTM*(theB1+lastTM*theSS);
692 G4double R1=(1.-G4Exp(-E1));
693 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
694 G4double tm2=lastTM*lastTM;
695 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
696 if(a>6.5)E2*=tm2; // for heavy nuclei
697 G4double R2=(1.-G4Exp(-E2));
698 G4double E3=lastTM*theB3;
699 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
700 G4double R3=(1.-G4Exp(-E3));
701 G4double E4=lastTM*theB4;
702 G4double R4=(1.-G4Exp(-E4));
703 G4double I1=R1*theS1;
704 G4double I2=R2*theS2;
705 G4double I3=R3*theS3;
706 G4double I4=R4*theS4;
707 G4double I12=I1+I2;
708 G4double I13=I12+I3;
709 G4double rand=(I13+I4)*G4UniformRand();
710 if(rand<I1)
711 {
712 G4double ran=R1*G4UniformRand();
713 if(ran>1.) ran=1.;
714 q2=-G4Log(1.-ran)/theB1;
715 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
716 }
717 else if(rand<I12)
718 {
719 G4double ran=R2*G4UniformRand();
720 if(ran>1.) ran=1.;
721 q2=-G4Log(1.-ran)/theB2;
722 if(q2<0.) q2=0.;
723 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
724 else q2=G4Pow::GetInstance()->powA(q2,fifth);
725 }
726 else if(rand<I13)
727 {
728 G4double ran=R3*G4UniformRand();
729 if(ran>1.) ran=1.;
730 q2=-G4Log(1.-ran)/theB3;
731 if(q2<0.) q2=0.;
732 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
733 }
734 else
735 {
736 G4double ran=R4*G4UniformRand();
737 if(ran>1.) ran=1.;
738 q2=-G4Log(1.-ran)/theB4;
739 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
740 }
741 }
742 if(q2<0.) q2=0.;
743 if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QaBElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
744 if(q2>lastTM)
745 {
746 q2=lastTM;
747 }
748 return q2*GeVSQ;
749}
750
751// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
752G4double G4ChipsAntiBaryonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
753{
754 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
755 if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetSlope:onlCS=true"<<G4endl;
756 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
757 if(PDG<-3334 || PDG>-1111)
758 {
759 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
760 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
761 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetSlope: AnBa are implemented");
763 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
764 << ", while it is defined only for Anti Baryons" << G4endl;
765 G4Exception("G4ChipsAntiBaryonElasticXS::GetSlope()", "HAD_CHPS_0000",
766 FatalException, ed);
767 }
768 if(theB1<0.) theB1=0.;
769 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QaBaElasticCrossS::Getslope:"<<theB1<<G4endl;
770 return theB1/GeVSQ;
771}
772
773// Returns half max(Q2=-t) in independent units (MeV^2)
774G4double G4ChipsAntiBaryonElasticXS::GetHMaxT()
775{
776 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
777 return lastTM*HGeVSQ;
778}
779
780// lastLP is used, so calculating tables, one need to remember and then recover lastLP
781G4double G4ChipsAntiBaryonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
782 G4int tgN)
783{
784 if(PDG<-3334 || PDG>-1111) G4cout<<"*Warning*G4QAntiBaryElCS::GetTabV:PDG="<<PDG<<G4endl;
785
786 //AR-24Apr2018 Switch to allow transuranic elements
787 const G4bool isHeavyElementAllowed = true;
788 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
789 {
790 G4cout<<"*Warning*G4QAntiBaryonElCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
791 return 0.;
792 }
793 G4int iZ=tgZ-1; // Z index
794 if(iZ<0)
795 {
796 iZ=0; // conversion of the neutron target to the proton target
797 tgZ=1;
798 tgN=0;
799 }
800 G4double p=G4Exp(lp); // momentum
801 G4double sp=std::sqrt(p); // sqrt(p)
802 G4double p2=p*p;
803 G4double p3=p2*p;
804 G4double p4=p3*p;
805 if ( tgZ == 1 && tgN == 0 ) // PiMin+P
806 {
807 G4double dl2=lp-lastPAR[6]; // ld ?
808 theSS=lastPAR[29];
809 theS1=(lastPAR[7]+lastPAR[8]*dl2*dl2)/(1.+lastPAR[9]/p4/p)+
810 (lastPAR[10]/p2+lastPAR[11]*p)/(p4+lastPAR[12]*sp);
811 theB1=lastPAR[13]*G4Pow::GetInstance()->powA(p,lastPAR[14])/(1.+lastPAR[15]/p3);
812 theS2=lastPAR[16]+lastPAR[17]/(p4+lastPAR[18]*p);
813 theB2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]/sp);
814 theS3=lastPAR[22]+lastPAR[23]/(p4*p4+lastPAR[24]*p2+lastPAR[25]);
815 theB3=lastPAR[26]+lastPAR[27]/(p4+lastPAR[28]);
816 theS4=0.;
817 theB4=0.;
818 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
819 G4double ye=G4Exp(lp*lastPAR[0]);
820 G4double dp=lp-lastPAR[1];
821 return lastPAR[2]/(ye+lastPAR[3])+lastPAR[4]*dp*dp+lastPAR[5];
822 }
823 else
824 {
825 G4double p5=p4*p;
826 G4double p6=p5*p;
827 G4double p8=p6*p2;
828 G4double p10=p8*p2;
829 G4double p12=p10*p2;
830 G4double p16=p8*p8;
831 //G4double p24=p16*p8;
832 G4double dl=lp-5.;
833 G4double a=tgZ+tgN;
834 G4double pah=G4Pow::GetInstance()->powA(p,a/2);
835 G4double pa=pah*pah;
836 G4double pa2=pa*pa;
837 if(a<6.5)
838 {
839 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
840 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
841 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
842 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
843 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
844 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
845 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
846 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
847 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
848 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
849 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
850 }
851 else
852 {
853 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
854 lastPAR[13]/(p5+lastPAR[14]/p16);
855 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
856 lastPAR[17]/(1.+lastPAR[18]/p4);
857 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
858 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
859 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
860 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
861 lastPAR[33]/(1.+lastPAR[34]/p6);
862 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
863 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
864 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
865 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
866 }
867 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
868 G4double dlp=lp-lastPAR[4]; // ax
869 // p1 p2 p3 p4
870 return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p)/(1.+lastPAR[3]/p);
871 }
872 return 0.;
873} // End of GetTableValues
874
875// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
876G4double G4ChipsAntiBaryonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
877 G4double pP)
878{
879 static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass()*.001; // MeV to GeV
880 static const G4double mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV
881 static const G4double mNuc2= sqr((mProt+mNeut)/2);
882 G4double pP2=pP*pP; // squared momentum of the projectile
883 if(tgZ || tgN>-1) // ---> pipA
884 {
885 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
886 G4double dmt=mt+mt;
887 G4double mds=dmt*std::sqrt(pP2+mNuc2)+mNuc2+mt*mt; // Mondelstam mds (@@ other AntiBar?)
888 return dmt*dmt*pP2/mds;
889 }
890 else
891 {
892 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
893 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
894 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetQ2max: only aBA implemented");
896 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
897 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
898 G4Exception("G4ChipsAntiBaryonElasticXS::GetQ2max()", "HAD_CHPS_0000",
899 FatalException, ed);
900 return 0;
901 }
902}
#define G4_DECLARE_XS_FACTORY(cross_section)
double A(double temperature)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
static G4Proton * Proton()
Definition: G4Proton.cc:92
T sqr(const T &x)
Definition: templates.hh:128