Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionPlusInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29//
30// G4 Physics class: G4ChipsPionPlusInelasticXS for gamma+A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33//
34// -------------------------------------------------------------------------------------
35// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
36// pion interactions. Original author: M. Kossov
37// -------------------------------------------------------------------------------------
38//
39
41#include "G4SystemOfUnits.hh"
42#include "G4DynamicParticle.hh"
44#include "G4PionPlus.hh"
45
46#include "G4Log.hh"
47#include "G4Exp.hh"
48#include "G4Pow.hh"
49
50// factory
52//
54
56{
57 // Initialization of the
58 lastLEN=0; // Pointer to lastArray of LowEn CS
59 lastHEN=0; // Pointer to lastArray of HighEn CS
60 lastN=0; // The last N of calculated nucleus
61 lastZ=0; // The last Z of calculated nucleus
62 lastP=0.; // Last used in cross section Momentum
63 lastTH=0.; // Last threshold momentum
64 lastCS=0.; // Last value of the Cross Section
65 lastI=0; // The last position in the DAMDB
66 LEN = new std::vector<G4double*>;
67 HEN = new std::vector<G4double*>;
68}
69
70
72{
73 std::size_t lens=LEN->size();
74 for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
75 delete LEN;
76 std::size_t hens=HEN->size();
77 for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
78 delete HEN;
79}
80
81void
83{
84 outFile << "G4ChipsPionPlusInelasticXS provides the inelastic cross\n"
85 << "section for pion+ nucleus scattering as a function of incident\n"
86 << "momentum. The cross section is calculated using M. Kossov's\n"
87 << "CHIPS parameterization of cross section data.\n";
88}
89
91 const G4Element*,
92 const G4Material*)
93{
94 return true;
95}
96
97// The main member function giving the collision cross section (P is in IU, CS is in mb)
98// Make pMom in independent units ! (Now it is MeV)
100 const G4Isotope*,
101 const G4Element*,
102 const G4Material*)
103{
104 G4double pMom=Pt->GetTotalMomentum();
105 G4int tgN = A - tgZ;
106
107 return GetChipsCrossSection(pMom, tgZ, tgN, 211);
108}
109
110
112{
113
114 G4bool in=false; // By default the isotope must be found in the AMDB
115 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
116 {
117 in = false; // By default the isotope haven't be found in AMDB
118 lastP = 0.; // New momentum history (nothing to compare with)
119 lastN = tgN; // The last N of the calculated nucleus
120 lastZ = tgZ; // The last Z of the calculated nucleus
121 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
122 j = 0; // A#0f records found in DB for this projectile
123 if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
124 {
125 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
126 {
127 lastI=i; // Remember the index for future fast/last use
128 lastTH =colTH[i]; // The last THreshold (A-dependent)
129 if(pMom<=lastTH)
130 {
131 return 0.; // Energy is below the Threshold value
132 }
133 lastP =colP [i]; // Last Momentum (A-dependent)
134 lastCS =colCS[i]; // Last CrossSect (A-dependent)
135 in = true; // This is the case when the isotop is found in DB
136 // Momentum pMom is in IU ! @@ Units
137 lastCS=CalculateCrossSection(-1,j,211,lastZ,lastN,pMom); // read & update
138 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
139 {
140 lastCS=0.;
141 lastTH=pMom;
142 }
143 break; // Go out of the LOOP
144 }
145 j++; // Increment a#0f records found in DB
146 }
147 if(!in) // This isotope has not been calculated previously
148 {
149 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
150 lastCS=CalculateCrossSection(0,j,211,lastZ,lastN,pMom); //calculate & create
151 //if(lastCS>0.) // It means that the AMBD was initialized
152 //{
153
154 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
155 colN.push_back(tgN);
156 colZ.push_back(tgZ);
157 colP.push_back(pMom);
158 colTH.push_back(lastTH);
159 colCS.push_back(lastCS);
160 //} // M.K. Presence of H1 with high threshold breaks the syncronization
161 return lastCS*millibarn;
162 } // End of creation of the new set of parameters
163 else
164 {
165 colP[lastI]=pMom;
166 colCS[lastI]=lastCS;
167 }
168 } // End of parameters udate
169 else if(pMom<=lastTH)
170 {
171 return 0.; // Momentum is below the Threshold Value -> CS=0
172 }
173 else // It is the last used -> use the current tables
174 {
175 lastCS=CalculateCrossSection(1,j,211,lastZ,lastN,pMom); // Only read and UpdateDB
176 lastP=pMom;
177 }
178 return lastCS*millibarn;
179}
180
181// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
182G4double G4ChipsPionPlusInelasticXS::CalculateCrossSection(G4int F, G4int I,
183 G4int, G4int targZ, G4int targN, G4double Momentum)
184{
185 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
186 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
187 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
188 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
189 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
190 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
191 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
192 static const G4int nH=224; // A#of HEN points in lnE
193 static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
194 static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
195 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
196 static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
197 G4double sigma=0.;
198 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
199 //G4double A=targN+targZ; // A of the target
200 if(F<=0) // This isotope was not the last used isotop
201 {
202 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
203 {
204 G4int sync=(G4int)LEN->size();
205 if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
206 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
207 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
208 }
209 else // This isotope wasn't calculated before => CREATE
210 {
211 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
212 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
213 // --- Instead of making a separate function ---
214 G4double P=THmiG; // Table threshold in GeV/c
215 for(G4int k=0; k<nL; k++)
216 {
217 lastLEN[k] = CrossSectionLin(targZ, targN, P);
218 P+=dPG;
219 }
220 G4double lP=milPG;
221 for(G4int n=0; n<nH; n++)
222 {
223 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
224 lP+=dlP;
225 }
226 // --- End of possible separate function
227 // *** The synchronization check ***
228 G4int sync=(G4int)LEN->size();
229 if(sync!=I)
230 {
231 G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
232 <<", N="<<targN<<", F="<<F<<G4endl;
233 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
234 }
235 LEN->push_back(lastLEN); // remember the Low Energy Table
236 HEN->push_back(lastHEN); // remember the High Energy Table
237 } // End of creation of the new set of parameters
238 } // End of parameters udate
239 // =-----------------= NOW the Magic Formula =-------------------------=
240 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
241 else if (Momentum<Pmin) // High Energy region
242 {
243 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
244 }
245 else if (Momentum<Pmax) // High Energy region
246 {
247 G4double lP=G4Log(Momentum);
248 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
249 }
250 else // UHE region (calculation, not frequent)
251 {
252 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
253 sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
254 }
255 if(sigma<0.) return 0.;
256 return sigma;
257}
258
259// Electromagnetic momentum-threshold (in MeV/c)
260G4double G4ChipsPionPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
261{
262 static const G4double third=1./3.;
263 static const G4double pM = G4PionPlus::PionPlus()->Definition()->GetPDGMass(); // Projectile mass in MeV
264 static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
265 G4double tA=tZ+tN;
266 if(tZ<.99 || tN<0.) return 0.;
267 else if(tZ==1 && tN==0) return 300.; // A threshold on the free proton
268 //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third));
269 G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE)
270 G4double tM=931.5*tA;
271 G4double T=dE+dE*(dE/2+pM)/tM;
272 return std::sqrt(T*(tpM+T));
273}
274
275// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
276G4double G4ChipsPionPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
277{
278 G4double lP=G4Log(P);
279 return CrossSectionFormula(tZ, tN, P, lP);
280}
281
282// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
283G4double G4ChipsPionPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
284{
285 G4double P=G4Exp(lP);
286 return CrossSectionFormula(tZ, tN, P, lP);
287}
288// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
289G4double G4ChipsPionPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
290 G4double P, G4double lP)
291{
292 G4double sigma=0.;
293 if(tZ==1 && !tN) // PiPlus-Proton interaction from G4QuasiElRatios
294 {
295 G4double ld=lP-3.5;
296 G4double ld2=ld*ld;
297 G4double p2=P*P;
298 G4double p4=p2*p2;
299 G4double sp=std::sqrt(P);
300 G4double lm=lP-.32;
301 G4double md=lm*lm+.04;
302 G4double El=(.0557*ld2+2.4+6./sp)/(1.+3./p4);
303 G4double To=(.3*ld2+22.3+5./sp)/(1.+1./p4);
304 sigma=(To-El)+.1/md;
305 }
306 else if(tZ==1 && tN==1) // pimp_tot
307 {
308 G4double p2=P*P;
309 G4double d=lP-2.7;
310 G4double f=lP+1.25;
311 G4double gg=lP-.017;
312 sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
313 }
314 else if(tZ<97 && tN<152) // General solution
315 {
316 G4double d=lP-4.2;
317 G4double p2=P*P;
318 G4double p4=p2*p2;
319 G4double a=tN+tZ; // A of the target
320 G4double al=G4Log(a);
321 G4double sa=std::sqrt(a);
322 G4double ssa=std::sqrt(sa);
323 G4double a2=a*a;
324 G4double c=41.*G4Exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
325 G4double f=290.*ssa/(1.+34./a/ssa);
326 G4double gg=-1.32-al*.043;
327 G4double u=lP-gg;
328 G4double h=al*(.4-.055*al);
329 G4double r=.01+a2*5.E-8;
330 sigma=(c+d*d)/(1.+(.2-.009*sa)/p4)+f/(u*u+h*h)/(1.+r/p2);
331 }
332 else
333 {
334 G4cerr<<"-Warning-G4ChipsPiPlusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
335 sigma=0.;
336 }
337 if(sigma<0.) return 0.;
338 return sigma;
339}
340
341G4double G4ChipsPionPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
342{
343 if(DX<=0. || N<2)
344 {
345 G4cerr<<"***G4ChipsPionPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
346 return Y[0];
347 }
348
349 G4int N2=N-2;
350 G4double d=(X-X0)/DX;
351 G4int jj=static_cast<int>(d);
352 if (jj<0) jj=0;
353 else if(jj>N2) jj=N2;
354 d-=jj; // excess
355 G4double yi=Y[jj];
356 G4double sigma=yi+(Y[jj+1]-yi)*d;
357
358 return sigma;
359}
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double Y(G4double density)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual void CrossSectionDescription(std::ostream &) const
G4double GetTotalMomentum() const
static G4PionPlus * Definition()
Definition: G4PionPlus.cc:51
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
#define N
Definition: crc32.c:56