Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TDormandPrince45.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TDormandPrince45
27//
28// Class desription:
29//
30// An implementation of the 5th order embedded RK method from the paper:
31// J. R. Dormand and P. J. Prince, "A family of embedded Runge-Kutta formulae"
32// Journal of computational and applied Math., vol.6, no.1, pp.19-26, 1980.
33//
34// DormandPrince7 - 5(4) embedded RK method
35//
36
37// Created: Somnath Banerjee, Google Summer of Code 2015, 25 May 2015
38// Supervision: John Apostolakis, CERN
39// --------------------------------------------------------------------
40#ifndef G4TDORMAND_PRINCE_45_HH
41#define G4TDORMAND_PRINCE_45_HH
42
43#include <cassert>
45#include "G4FieldUtils.hh"
46
47template <class T_Equation, unsigned int N = 6 >
49{
50 public:
51
52 G4TDormandPrince45(T_Equation* equation );
53 G4TDormandPrince45(T_Equation* equation, G4int numVar ); // must have numVar == N
54
55 inline void
56 StepWithError(const G4double yInput[],
57 const G4double dydx[],
58 G4double hstep,
59 G4double yOutput[],
60 G4double yError[] ) ;
61
62 virtual void Stepper(const G4double yInput[],
63 const G4double dydx[],
64 G4double hstep,
65 G4double yOutput[],
66 G4double yError[]) override final;
67
68 inline
69 void StepWithFinalDerivate(const G4double yInput[],
70 const G4double dydx[],
71 G4double hstep,
72 G4double yOutput[],
73 G4double yError[],
74 G4double dydxOutput[]);
75
76 inline void SetupInterpolation() {}
77
78 void Interpolate(G4double tau, G4double yOut[]) const
79 {
80 Interpolate4thOrder(yOut, tau);
81 }
82 // For calculating the output at the tau fraction of Step
83
84 virtual G4double DistChord() const override final;
85
86 virtual G4int IntegratorOrder() const override { return 4; }
87
88 const field_utils::ShortState<N>& GetYOut() const { return fyOut; }
89
90 void Interpolate4thOrder(G4double yOut[], G4double tau) const;
91
93 void Interpolate5thOrder(G4double yOut[], G4double tau) const;
94
95 // __attribute__((always_inline))
96 void RightHandSideInl( const G4double y[],
97 G4double dydx[] )
98 {
99 fEquation_Rhs->T_Equation::RightHandSide(y, dydx);
100 }
101
102 inline
103 void Stepper(const G4double yInput[], const G4double dydx[],
104 G4double hstep, G4double yOutput[],
105 G4double yError[], G4double dydxOutput[])
106 {
107 StepWithFinalDerivate(yInput, dydx, hstep,
108 yOutput, yError, dydxOutput);
109 }
110
111 T_Equation* GetSpecificEquation() { return fEquation_Rhs; }
112
113 static constexpr int N8= N > 8 ? N : 8; // y[
114
115 private:
116
117 field_utils::ShortState<N> ak2, ak3, ak4, ak5, ak6, ak7, ak8, ak9;
119 field_utils::ShortState<N> fyOut, fdydxIn;
120
121 // - Simpler :
122 // field_utils::State ak2, ak3, ak4, ak5, ak6, ak7, ak8, ak9;
123 // field_utils::State fyIn, fyOut, fdydxIn;
124
125 G4double fLastStepLength = -1.0;
126 T_Equation* fEquation_Rhs;
127};
128
129// G4TDormandPrince745 implementation -- borrowed from G4DormandPrince745
130//
131// DormandPrince7 - 5(4) non-FSAL
132// definition of the stepper() method that evaluates one step in
133// field propagation.
134// The coefficients and the algorithm have been adapted from
135//
136// J. R. Dormand and P. J. Prince, "A family of embedded Runge-Kutta formulae"
137// Journal of computational and applied Math., vol.6, no.1, pp.19-26, 1980.
138//
139// The Butcher table of the Dormand-Prince-7-4-5 method is as follows :
140//
141// 0 |
142// 1/5 | 1/5
143// 3/10| 3/40 9/40
144// 4/5 | 44/45 56/15 32/9
145// 8/9 | 19372/6561 25360/2187 64448/6561 212/729
146// 1 | 9017/3168 355/33 46732/5247 49/176 5103/18656
147// 1 | 35/384 0 500/1113 125/192 2187/6784 11/84
148// ------------------------------------------------------------------------
149// 35/384 0 500/1113 125/192 2187/6784 11/84 0
150// 5179/57600 0 7571/16695 393/640 92097/339200 187/2100 1/40
151//
152// Created: Somnath Banerjee, Google Summer of Code 2015, 25 May 2015
153// Supervision: John Apostolakis, CERN
154// --------------------------------------------------------------------
155
156#include "G4LineSection.hh"
157
158#include <cstring>
159
160// using namespace field_utils;
161
162/////////////////////////////////////////////////////////////////////
163// Constructor
164//
165template <class T_Equation, unsigned int N>
167 : G4MagIntegratorStepper(dynamic_cast<G4EquationOfMotion*>(equation), N )
168 , fEquation_Rhs(equation)
169{
170 // assert( dynamic_cast<G4EquationOfMotion*>(equation) != nullptr );
171 if( dynamic_cast<G4EquationOfMotion*>(equation) == nullptr )
172 {
173 G4Exception("G4TDormandPrince745: constructor", "GeomField0001",
174 FatalException, "T_Equation is not an G4EquationOfMotion.");
175 }
176
177 /***
178 assert( equation->GetNumberOfVariables == N );
179 if( equation->GetNumberOfVariables != N ){
180 G4ExceptionDescription msg;
181 msg << "Equation has an incompatible number of variables." ;
182 msg << " template N = " << N << " equation-Nvar= "
183 << equation->GetNumberOfVariables;
184 G4Exception("G4TCashKarpRKF45: constructor", "GeomField0001",
185 FatalException, msg );
186 } ****/
187}
188
189template <class T_Equation, unsigned int N>
191 : G4TDormandPrince45<T_Equation,N>(equation )
192{
193 if( numVar != G4int(N)){
195 msg << "Equation has an incompatible number of variables." ;
196 msg << " template N = " << N
197 << " argument numVar = " << numVar ;
198 // << " equation-Nvar= " << equation->GetNumberOfVariables(); // --> Expected later
199 G4Exception("G4TCashKarpRKF45: constructor", "GeomField0001",
201 }
202 assert( numVar == N );
203}
204
205template <class T_Equation, unsigned int N>
207StepWithFinalDerivate(const G4double yInput[],
208 const G4double dydx[],
209 G4double hstep,
210 G4double yOutput[],
211 G4double yError[],
212 G4double dydxOutput[])
213{
214 StepWithError(yInput, dydx, hstep, yOutput, yError);
215 field_utils::copy(dydxOutput, ak7, N);
216}
217
218// Stepper
219//
220// Passing in the value of yInput[],the first time dydx[] and Step length
221// Giving back yOut and yErr arrays for output and error respectively
222//
223
224template <class T_Equation, unsigned int N>
225inline void
227 const G4double dydx[],
228 G4double hstep,
229 G4double yOut[],
230 G4double yErr[] )
231{
232 // The parameters of the Butcher tableu
233 //
234 constexpr G4double b21 = 0.2,
235 b31 = 3.0 / 40.0, b32 = 9.0 / 40.0,
236 b41 = 44.0 / 45.0, b42 = -56.0 / 15.0, b43 = 32.0/9.0,
237
238 b51 = 19372.0 / 6561.0, b52 = -25360.0 / 2187.0, b53 = 64448.0 / 6561.0,
239 b54 = -212.0 / 729.0,
240
241 b61 = 9017.0 / 3168.0 , b62 = -355.0 / 33.0,
242 b63 = 46732.0 / 5247.0, b64 = 49.0 / 176.0,
243 b65 = -5103.0 / 18656.0,
244
245 b71 = 35.0 / 384.0, b72 = 0.,
246 b73 = 500.0 / 1113.0, b74 = 125.0 / 192.0,
247 b75 = -2187.0 / 6784.0, b76 = 11.0 / 84.0,
248
249 //Sum of columns, sum(bij) = ei
250 // e1 = 0. ,
251 // e2 = 1.0/5.0 ,
252 // e3 = 3.0/10.0 ,
253 // e4 = 4.0/5.0 ,
254 // e5 = 8.0/9.0 ,
255 // e6 = 1.0 ,
256 // e7 = 1.0 ,
257
258 // Difference between the higher and the lower order method coeff. :
259 // b7j are the coefficients of higher order
260
261 dc1 = -(b71 - 5179.0 / 57600.0),
262 dc2 = -(b72 - .0),
263 dc3 = -(b73 - 7571.0 / 16695.0),
264 dc4 = -(b74 - 393.0 / 640.0),
265 dc5 = -(b75 + 92097.0 / 339200.0),
266 dc6 = -(b76 - 187.0 / 2100.0),
267 dc7 = -(- 1.0 / 40.0);
268
269 // const G4int numberOfVariables = GetNumberOfVariables();
270 // The number of variables to be integrated over
272
273 yOut[7] = yTemp[7] = fyIn[7] = yInput[7]; // Pass along the time - used in RightHandSide
274
275 // Saving yInput because yInput and yOut can be aliases for same array
276 //
277 for(unsigned int i = 0; i < N; ++i)
278 {
279 fyIn[i] = yInput[i];
280 yTemp[i] = yInput[i] + b21 * hstep * dydx[i];
281 }
282 RightHandSideInl(yTemp, ak2); // 2nd stage
283
284 for(unsigned int i = 0; i < N; ++i)
285 {
286 yTemp[i] = fyIn[i] + hstep * (b31 * dydx[i] + b32 * ak2[i]);
287 }
288 RightHandSideInl(yTemp, ak3); // 3rd stage
289
290 for(unsigned int i = 0; i < N; ++i)
291 {
292 yTemp[i] = fyIn[i] + hstep * (
293 b41 * dydx[i] + b42 * ak2[i] + b43 * ak3[i]);
294 }
295 RightHandSideInl(yTemp, ak4); // 4th stage
296
297 for(unsigned int i = 0; i < N; ++i)
298 {
299 yTemp[i] = fyIn[i] + hstep * (
300 b51 * dydx[i] + b52 * ak2[i] + b53 * ak3[i] + b54 * ak4[i]);
301 }
302 RightHandSideInl(yTemp, ak5); // 5th stage
303
304 for(unsigned int i = 0; i < N; ++i)
305 {
306 yTemp[i] = fyIn[i] + hstep * (
307 b61 * dydx[i] + b62 * ak2[i] +
308 b63 * ak3[i] + b64 * ak4[i] + b65 * ak5[i]);
309 }
310 RightHandSideInl(yTemp, ak6); // 6th stage
311
312 for(unsigned int i = 0; i < N; ++i)
313 {
314 yOut[i] = fyIn[i] + hstep * (
315 b71 * dydx[i] + b72 * ak2[i] + b73 * ak3[i] +
316 b74 * ak4[i] + b75 * ak5[i] + b76 * ak6[i]);
317 }
318 RightHandSideInl(yOut, ak7); // 7th and Final stage
319
320 for(unsigned int i = 0; i < N; ++i)
321 {
322 yErr[i] = hstep * (
323 dc1 * dydx[i] + dc2 * ak2[i] +
324 dc3 * ak3[i] + dc4 * ak4[i] +
325 dc5 * ak5[i] + dc6 * ak6[i] + dc7 * ak7[i]
326 ) + 1.5e-18;
327
328 // Store Input and Final values, for possible use in calculating chord
329 //
330 fyOut[i] = yOut[i];
331 fdydxIn[i] = dydx[i];
332 }
333
334 fLastStepLength = hstep;
335}
336
337
338template <class T_Equation, unsigned int N >
339inline void
341 const G4double dydx[],
342 G4double Step,
343 G4double yOutput[],
344 G4double yError[])
345{
346 assert( yOutput != yInput );
347 assert( yError != yInput );
348
349 StepWithError( yInput, dydx, Step, yOutput, yError);
350}
351
352template <class T_Equation, unsigned int N>
355{
356 // Coefficients were taken from Some Practical Runge-Kutta Formulas
357 // by Lawrence F. Shampine, page 149, c*
358 //
359 const G4double hf1 = 6025192743.0 / 30085553152.0,
360 hf3 = 51252292925.0 / 65400821598.0,
361 hf4 = - 2691868925.0 / 45128329728.0,
362 hf5 = 187940372067.0 / 1594534317056.0,
363 hf6 = - 1776094331.0 / 19743644256.0,
364 hf7 = 11237099.0 / 235043384.0;
365
366 G4ThreeVector mid;
367
368 for(unsigned int i = 0; i < 3; ++i)
369 {
370 mid[i] = fyIn[i] + 0.5 * fLastStepLength * (
371 hf1 * fdydxIn[i] + hf3 * ak3[i] +
372 hf4 * ak4[i] + hf5 * ak5[i] + hf6 * ak6[i] + hf7 * ak7[i]);
373 }
374
375 const G4ThreeVector begin = makeVector(fyIn, field_utils::Value3D::Position);
376 const G4ThreeVector end = makeVector(fyOut, field_utils::Value3D::Position);
377
378 return G4LineSection::Distline(mid, begin, end);
379}
380
381// The lower (4th) order interpolant given by Dormand and Prince:
382// J. R. Dormand and P. J. Prince, "Runge-Kutta triples"
383// Computers & Mathematics with Applications, vol. 12, no. 9,
384// pp. 1007-1017, 1986.
385//
386template <class T_Equation, unsigned int N>
387void
389Interpolate4thOrder(G4double yOut[], G4double tau) const
390{
391 // const G4int numberOfVariables = GetNumberOfVariables();
392
393 const G4double tau2 = tau * tau,
394 tau3 = tau * tau2,
395 tau4 = tau2 * tau2;
396
397 const G4double bf1 = 1.0 / 11282082432.0 * (
398 157015080.0 * tau4 - 13107642775.0 * tau3 + 34969693132.0 * tau2 -
399 32272833064.0 * tau + 11282082432.0);
400
401 const G4double bf3 = - 100.0 / 32700410799.0 * tau * (
402 15701508.0 * tau3 - 914128567.0 * tau2 + 2074956840.0 * tau -
403 1323431896.0);
404
405 const G4double bf4 = 25.0 / 5641041216.0 * tau * (
406 94209048.0 * tau3 - 1518414297.0 * tau2 + 2460397220.0 * tau -
407 889289856.0);
408
409 const G4double bf5 = - 2187.0 / 199316789632.0 * tau * (
410 52338360.0 * tau3 - 451824525.0 * tau2 + 687873124.0 * tau -
411 259006536.0);
412
413 const G4double bf6 = 11.0 / 2467955532.0 * tau * (
414 106151040.0 * tau3 - 661884105.0 * tau2 +
415 946554244.0 * tau - 361440756.0);
416
417 const G4double bf7 = 1.0 / 29380423.0 * tau * (1.0 - tau) * (
418 8293050.0 * tau2 - 82437520.0 * tau + 44764047.0);
419
420 for(unsigned int i = 0; i < N; ++i)
421 {
422 yOut[i] = fyIn[i] + fLastStepLength * tau * (
423 bf1 * fdydxIn[i] + bf3 * ak3[i] + bf4 * ak4[i] +
424 bf5 * ak5[i] + bf6 * ak6[i] + bf7 * ak7[i]);
425 }
426}
427
428// Following interpolant of order 5 was given by Baker,Dormand,Gilmore, Prince :
429// T. S. Baker, J. R. Dormand, J. P. Gilmore, and P. J. Prince,
430// "Continuous approximation with embedded Runge-Kutta methods"
431// Applied Numerical Mathematics, vol. 22, no. 1, pp. 51-62, 1996.
432//
433// Calculating the extra stages for the interpolant
434//
435template <class T_Equation, unsigned int N>
437{
438 // Coefficients for the additional stages
439 //
440 const G4double b81 = 6245.0 / 62208.0,
441 b82 = 0.0,
442 b83 = 8875.0 / 103032.0,
443 b84 = -125.0 / 1728.0,
444 b85 = 801.0 / 13568.0,
445 b86 = -13519.0 / 368064.0,
446 b87 = 11105.0 / 368064.0,
447
448 b91 = 632855.0 / 4478976.0,
449 b92 = 0.0,
450 b93 = 4146875.0 / 6491016.0,
451 b94 = 5490625.0 /14183424.0,
452 b95 = -15975.0 / 108544.0,
453 b96 = 8295925.0 / 220286304.0,
454 b97 = -1779595.0 / 62938944.0,
455 b98 = -805.0 / 4104.0;
456
457 // const G4int numberOfVariables = GetNumberOfVariables();
459
460 // Evaluate the extra stages
461 //
462 for(unsigned int i = 0; i < N; ++i)
463 {
464 yTemp[i] = fyIn[i] + fLastStepLength * (
465 b81 * fdydxIn[i] + b82 * ak2[i] + b83 * ak3[i] +
466 b84 * ak4[i] + b85 * ak5[i] + b86 * ak6[i] +
467 b87 * ak7[i]
468 );
469 }
470 RightHandSideInl(yTemp, ak8); // 8th Stage
471
472 for(unsigned int i = 0; i < N; ++i)
473 {
474 yTemp[i] = fyIn[i] + fLastStepLength * (
475 b91 * fdydxIn[i] + b92 * ak2[i] + b93 * ak3[i] +
476 b94 * ak4[i] + b95 * ak5[i] + b96 * ak6[i] +
477 b97 * ak7[i] + b98 * ak8[i]
478 );
479 }
480 RightHandSideInl(yTemp, ak9); // 9th Stage
481}
482
483// Calculating the interpolated result yOut with the coefficients
484//
485template <class T_Equation, unsigned int N>
487Interpolate5thOrder(G4double yOut[], G4double tau) const
488{
489 // Define the coefficients for the polynomials
490 //
491 G4double bi[10][5];
492
493 // COEFFICIENTS OF bi[1]
494 bi[1][0] = 1.0,
495 bi[1][1] = -38039.0 / 7040.0,
496 bi[1][2] = 125923.0 / 10560.0,
497 bi[1][3] = -19683.0 / 1760.0,
498 bi[1][4] = 3303.0 / 880.0,
499 // --------------------------------------------------------
500 //
501 // COEFFICIENTS OF bi[2]
502 bi[2][0] = 0.0,
503 bi[2][1] = 0.0,
504 bi[2][2] = 0.0,
505 bi[2][3] = 0.0,
506 bi[2][4] = 0.0,
507 // --------------------------------------------------------
508 //
509 // COEFFICIENTS OF bi[3]
510 bi[3][0] = 0.0,
511 bi[3][1] = -12500.0 / 4081.0,
512 bi[3][2] = 205000.0 / 12243.0,
513 bi[3][3] = -90000.0 / 4081.0,
514 bi[3][4] = 36000.0 / 4081.0,
515 // --------------------------------------------------------
516 //
517 // COEFFICIENTS OF bi[4]
518 bi[4][0] = 0.0,
519 bi[4][1] = -3125.0 / 704.0,
520 bi[4][2] = 25625.0 / 1056.0,
521 bi[4][3] = -5625.0 / 176.0,
522 bi[4][4] = 1125.0 / 88.0,
523 // --------------------------------------------------------
524 //
525 // COEFFICIENTS OF bi[5]
526 bi[5][0] = 0.0,
527 bi[5][1] = 164025.0 / 74624.0,
528 bi[5][2] = -448335.0 / 37312.0,
529 bi[5][3] = 295245.0 / 18656.0,
530 bi[5][4] = -59049.0 / 9328.0,
531 // --------------------------------------------------------
532 //
533 // COEFFICIENTS OF bi[6]
534 bi[6][0] = 0.0,
535 bi[6][1] = -25.0 / 28.0,
536 bi[6][2] = 205.0 / 42.0,
537 bi[6][3] = -45.0 / 7.0,
538 bi[6][4] = 18.0 / 7.0,
539 // --------------------------------------------------------
540 //
541 // COEFFICIENTS OF bi[7]
542 bi[7][0] = 0.0,
543 bi[7][1] = -2.0 / 11.0,
544 bi[7][2] = 73.0 / 55.0,
545 bi[7][3] = -171.0 / 55.0,
546 bi[7][4] = 108.0 / 55.0,
547 // --------------------------------------------------------
548 //
549 // COEFFICIENTS OF bi[8]
550 bi[8][0] = 0.0,
551 bi[8][1] = 189.0 / 22.0,
552 bi[8][2] = -1593.0 / 55.0,
553 bi[8][3] = 3537.0 / 110.0,
554 bi[8][4] = -648.0 / 55.0,
555 // --------------------------------------------------------
556 //
557 // COEFFICIENTS OF bi[9]
558 bi[9][0] = 0.0,
559 bi[9][1] = 351.0 / 110.0,
560 bi[9][2] = -999.0 / 55.0,
561 bi[9][3] = 2943.0 / 110.0,
562 bi[9][4] = -648.0 / 55.0;
563 // --------------------------------------------------------
564
565 // Calculating the polynomials
566
567 G4double b[10];
568 std::memset(b, 0.0, sizeof(b));
569
570 G4double tauPower = 1.0;
571 for(G4int j = 0; j <= 4; ++j)
572 {
573 for(G4int iStage = 1; iStage <= 9; ++iStage)
574 {
575 b[iStage] += bi[iStage][j] * tauPower;
576 }
577 tauPower *= tau;
578 }
579
580 // const G4int numberOfVariables = GetNumberOfVariables();
581 const G4double stepLen = fLastStepLength * tau;
582 for(G4int i = 0; i < N; ++i)
583 {
584 yOut[i] = fyIn[i] + stepLen * (
585 b[1] * fdydxIn[i] + b[2] * ak2[i] + b[3] * ak3[i] +
586 b[4] * ak4[i] + b[5] * ak5[i] + b[6] * ak6[i] +
587 b[7] * ak7[i] + b[8] * ak8[i] + b[9] * ak9[i]
588 );
589 }
590}
591
592
593#endif
@ FatalException
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
void RightHandSideInl(const G4double y[], G4double dydx[])
G4TDormandPrince45(T_Equation *equation)
T_Equation * GetSpecificEquation()
void Interpolate(G4double tau, G4double yOut[]) const
virtual G4int IntegratorOrder() const override
static constexpr int N8
void Interpolate4thOrder(G4double yOut[], G4double tau) const
void StepWithFinalDerivate(const G4double yInput[], const G4double dydx[], G4double hstep, G4double yOutput[], G4double yError[], G4double dydxOutput[])
void Stepper(const G4double yInput[], const G4double dydx[], G4double hstep, G4double yOutput[], G4double yError[], G4double dydxOutput[])
const field_utils::ShortState< N > & GetYOut() const
virtual G4double DistChord() const override final
virtual void Stepper(const G4double yInput[], const G4double dydx[], G4double hstep, G4double yOutput[], G4double yError[]) override final
void Interpolate5thOrder(G4double yOut[], G4double tau) const
void StepWithError(const G4double yInput[], const G4double dydx[], G4double hstep, G4double yOutput[], G4double yError[])
#define N
Definition: crc32.c:56
void copy(G4double dst[], const G4double src[], std::size_t size=G4FieldTrack::ncompSVEC)
Definition: G4FieldUtils.cc:98
G4double[N] ShortState
Definition: G4FieldUtils.hh:48