Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DensityEffectCalculator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27/*
28 * Implements calculation of the Fermi density effect as per the method
29 * described in:
30 *
31 * R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density
32 * effect for the ionization loss of charged particles in various sub-
33 * stances. Atom. Data Nucl. Data Tabl., 30:261, 1984.
34 *
35 * Which (among other Sternheimer references) builds on:
36 *
37 * R. M. Sternheimer. The density effect for ionization loss in
38 * materials. Phys. Rev., 88:851­859, 1952.
39 *
40 * The returned values of delta are directly from the Sternheimer calculation,
41 * and not Sternheimer's popular three-part approximate parameterization
42 * introduced in the same paper.
43 *
44 * Author: Matthew Strait <[email protected]> 2019
45 */
46
48#include "G4AtomicShells.hh"
49#include "G4NistManager.hh"
50#include "G4Pow.hh"
51
52static G4Pow * gpow = G4Pow::GetInstance();
53
54const G4int maxWarnings = 20;
55
57 : fMaterial(mat), fVerbose(0), fWarnings(0), nlev(n)
58{
59 fVerbose = std::max(fVerbose, G4NistManager::Instance()->GetVerbose());
60
61 sternf = new G4double [nlev];
62 levE = new G4double [nlev];
63 sternl = new G4double [nlev];
64 sternEbar = new G4double [nlev];
65 for(G4int i=0; i<nlev; ++i) {
66 sternf[i] = 0.0;
67 levE[i] = 0.0;
68 sternl[i] = 0.0;
69 sternEbar[i] = 0.0;
70 }
71
72 fConductivity = sternx = 0.0;
73 G4bool conductor = (fMaterial->GetFreeElectronDensity() > 0.0);
74
75 G4int sh = 0;
76 G4double sum = 0.;
77 const G4double tot = fMaterial->GetTotNbOfAtomsPerVolume();
78 for(size_t j = 0; j < fMaterial->GetNumberOfElements(); ++j) {
79 // The last subshell is considered to contain the conduction
80 // electrons. Sternheimer 1984 says "the lowest chemical valance of
81 // the element" is used to set the number of conduction electrons.
82 // I'm not sure if that means the highest subshell or the whole
83 // shell, but in any case, he also says that the choice is arbitrary
84 // and offers a possible alternative. This is one of the sources of
85 // uncertainty in the model.
86 const G4double frac = fMaterial->GetVecNbOfAtomsPerVolume()[j]/tot;
87 const G4int Z = fMaterial->GetElement((G4int)j)->GetZasInt();
89 for(G4int i = 0; i < nshell; ++i) {
90 // For conductors, put *all* top shell electrons into the conduction
91 // band, regardless of element.
93 if(i < nshell-1 || !conductor) {
94 sternf[sh] += xx;
95 } else {
96 fConductivity += xx;
97 }
98 levE[sh] = G4AtomicShells::GetBindingEnergy(Z, i)/CLHEP::eV;
99 ++sh;
100 }
101 }
102 for(G4int i=0; i<nlev; ++i) {
103 sum += sternf[i];
104 }
105 sum += fConductivity;
106
107 const G4double invsum = (sum > 0.0) ? 1./sum : 0.0;
108 for(G4int i=0; i<nlev; ++i) {
109 sternf[i] *= invsum;
110 }
111 fConductivity *= invsum;
112 plasmaE = fMaterial->GetIonisation()->GetPlasmaEnergy()/CLHEP::eV;
113 meanexcite = fMaterial->GetIonisation()->GetMeanExcitationEnergy()/CLHEP::eV;
114}
115
117{
118 delete [] sternf;
119 delete [] levE;
120 delete [] sternl;
121 delete [] sternEbar;
122}
123
125{
126 if(fVerbose > 1) {
127 G4cout << "G4DensityEffectCalculator::ComputeDensityCorrection for "
128 << fMaterial->GetName() << ", x= " << x << G4endl;
129 }
130 const G4double approx = fMaterial->GetIonisation()->GetDensityCorrection(x);
131 const G4double exact = FermiDeltaCalculation(x);
132
133 if(fVerbose > 1) {
134 G4cout << " Delta: computed= " << exact
135 << ", parametrized= " << approx << G4endl;
136 }
137 if(approx >= 0. && exact < 0.) {
138 if(fVerbose > 0) {
139 ++fWarnings;
140 if(fWarnings < maxWarnings) {
142 ed << "Sternheimer fit failed for " << fMaterial->GetName()
143 << ", x = " << x << ": Delta exact= "
144 << exact << ", approx= " << approx;
145 G4Exception("G4DensityEffectCalculator::DensityCorrection", "mat008",
146 JustWarning, ed);
147 }
148 }
149 return approx;
150 }
151 // Fall back to approx if exact and approx are very different, under the
152 // assumption that this means the exact calculation has gone haywire
153 // somehow, with the exception of the case where approx is negative. I
154 // have seen this clearly-wrong result occur for substances with extremely
155 // low density (1e-25 g/cc).
156 if(approx >= 0. && std::abs(exact - approx) > 1.) {
157 if(fVerbose > 0) {
158 ++fWarnings;
159 if(fWarnings < maxWarnings) {
161 ed << "Sternheimer exact= " << exact << " and approx= "
162 << approx << " are too different for "
163 << fMaterial->GetName() << ", x = " << x;
164 G4Exception("G4DensityEffectCalculator::DensityCorrection", "mat008",
165 JustWarning, ed);
166 }
167 }
168 return approx;
169 }
170 return exact;
171}
172
173G4double G4DensityEffectCalculator::FermiDeltaCalculation(G4double x)
174{
175 // Above beta*gamma of 10^10, the exact treatment is within machine
176 // precision of the limiting case, for ordinary solids, at least. The
177 // convergence goes up as the density goes down, but even in a pretty
178 // hard vacuum it converges by 10^20. Also, it's hard to imagine how
179 // this energy is relevant (x = 20 -> 10^19 GeV for muons). So this
180 // is mostly not here for physical reasons, but rather to avoid ugly
181 // discontinuities in the return value.
182 if(x > 20.) { return -1.; }
183
184 sternx = x;
185 G4double sternrho = Newton(1.5, true);
186
187 // Negative values, and values much larger than unity are non-physical.
188 // Values between zero and one are also suspect, but not as clearly wrong.
189 if(sternrho <= 0. || sternrho > 100.) {
190 if(fVerbose > 0) {
191 ++fWarnings;
192 if(fWarnings < maxWarnings) {
194 ed << "Sternheimer computation failed for " << fMaterial->GetName()
195 << ", x = " << x << ":\n"
196 << "Could not solve for Sternheimer rho. Probably you have a \n"
197 << "mean ionization energy which is incompatible with your\n"
198 << "distribution of energy levels, or an unusually dense material.\n"
199 << "Number of levels: " << nlev
200 << " Mean ionization energy(eV): " << meanexcite
201 << " Plasma energy(eV): " << plasmaE << "\n";
202 for(G4int i = 0; i < nlev; ++i) {
203 ed << "Level " << i << ": strength " << sternf[i]
204 << ": energy(eV)= " << levE[i] << "\n";
205 }
206 G4Exception("G4DensityEffectCalculator::SetupFermiDeltaCalc", "mat008",
207 JustWarning, ed);
208 }
209 }
210 return -1.;
211 }
212
213 // Calculate the Sternheimer adjusted energy levels and parameters l_i given
214 // the Sternheimer parameter rho.
215 for(G4int i=0; i<nlev; ++i) {
216 sternEbar[i] = levE[i] * (sternrho/plasmaE);
217 sternl[i] = std::sqrt(gpow->powN(sternEbar[i], 2) + (2./3.)*sternf[i]);
218 }
219 // The derivative of the function we are solving for is strictly
220 // negative for positive (physical) values, so if the value at
221 // zero is less than zero, it has no solution, and there is no
222 // density effect in the Sternheimer "exact" treatment (which is
223 // still an approximation).
224 //
225 // For conductors, this test is not needed, because Ell(L) contains
226 // the term fConductivity/(L*L), so the value at L=0 is always
227 // positive infinity. In the code we don't return inf, though, but
228 // rather set that term to zero, which means that if this test were
229 // used, it would give the wrong result for some materials.
230 if(fConductivity == 0 && Ell(0) <= 0)
231 {
232 return 0;
233 }
234
235 // Attempt to find the root from 40 starting points evenly distributed
236 // in log space. Trying a single starting point is not sufficient for
237 // convergence in most cases.
238 for(G4int startLi = -10; startLi < 30; ++startLi){
239 const G4double sternL = Newton(gpow->powN(2, startLi), false);
240 if(sternL != -1.) {
241 return DeltaOnceSolved(sternL);
242 }
243 }
244 return -1.; // Signal the caller to use the Sternheimer approximation,
245 // because we have been unable to solve the exact form.
246}
247
248/* Newton's method for finding roots. Adapted from G4PolynominalSolver, but
249 * without the assumption that the input is a polynomial. Also, here we
250 * always expect the roots to be positive, so return -1 as an error value. */
251G4double G4DensityEffectCalculator::Newton(G4double start, G4bool first)
252{
253 const G4int maxIter = 100;
254 G4int nbad = 0, ngood = 0;
255
256 G4double lambda(start), value(0.), dvalue(0.);
257
258 if(fVerbose > 2) {
259 G4cout << "G4DensityEffectCalculator::Newton: strat= " << start
260 << " type: " << first << G4endl;
261 }
262 while(true) {
263 if(first) {
264 value = FRho(lambda);
265 dvalue = DFRho(lambda);
266 } else {
267 value = Ell(lambda);
268 dvalue = DEll(lambda);
269 }
270 if(dvalue == 0.0) { break; }
271 const G4double del = value/dvalue;
272 lambda -= del;
273
274 const G4double eps = std::abs(del/lambda);
275 if(eps <= 1.e-12) {
276 ++ngood;
277 if(ngood == 2) {
278 if(fVerbose > 2) {
279 G4cout << " Converged with result= " << lambda << G4endl;
280 }
281 return lambda;
282 }
283 } else {
284 ++nbad;
285 }
286 if(nbad > maxIter || std::isnan(value) || std::isinf(value)) { break; }
287 }
288 if(fVerbose > 2) {
289 G4cout << " Failed to converge last value= " << value
290 << " dvalue= " << dvalue << " lambda= " << lambda << G4endl;
291 }
292 return -1.;
293}
294
295/* Return the derivative of the equation used
296 * to solve for the Sternheimer parameter rho. */
297G4double G4DensityEffectCalculator::DFRho(G4double rho)
298{
299 G4double ans = 0.0;
300 for(G4int i = 0; i < nlev; ++i) {
301 if(sternf[i] > 0.) {
302 ans += sternf[i] * gpow->powN(levE[i], 2) * rho /
303 (gpow->powN(levE[i] * rho, 2)
304 + 2./3. * sternf[i] * gpow->powN(plasmaE, 2));
305 }
306 }
307 return ans;
308}
309
310/* Return the functional value for the equation used
311 * to solve for the Sternheimer parameter rho. */
312G4double G4DensityEffectCalculator::FRho(G4double rho)
313{
314 G4double ans = 0.0;
315 for(G4int i = 0; i<nlev; ++i) {
316 if(sternf[i] > 0.) {
317 ans += sternf[i] * G4Log(gpow->powN(levE[i]*rho, 2) +
318 2./3. * sternf[i]*gpow->powN(plasmaE, 2));
319 }
320 }
321 ans *= 0.5; // pulled out of loop for efficiency
322
323 if(fConductivity > 0.) {
324 ans += fConductivity * G4Log(plasmaE * std::sqrt(fConductivity));
325 }
326 ans -= G4Log(meanexcite);
327 return ans;
328}
329
330/* Return the derivative for the equation used to
331 * solve for the Sternheimer parameter l, called 'L' here. */
332G4double G4DensityEffectCalculator::DEll(G4double L)
333{
334 G4double ans = 0.;
335 for(G4int i=0; i<nlev; ++i) {
336 if(sternf[i] > 0 && (sternEbar[i] > 0. || L != 0.)) {
337 const G4double y = gpow->powN(sternEbar[i], 2);
338 ans += sternf[i]/gpow->powN(y + L*L, 2);
339 }
340 }
341 ans += fConductivity/gpow->powN(L*L, 2);
342 ans *= (-2*L); // pulled out of the loop for efficiency
343 return ans;
344}
345
346/* Return the functional value for the equation used to
347 * solve for the Sternheimer parameter l, called 'L' here. */
348G4double G4DensityEffectCalculator::Ell(G4double L)
349{
350 G4double ans = 0.;
351 for(G4int i=0; i<nlev; ++i) {
352 if(sternf[i] > 0. && (sternEbar[i] > 0. || L != 0.)) {
353 ans += sternf[i]/(gpow->powN(sternEbar[i], 2) + L*L);
354 }
355 }
356 if(fConductivity > 0. && L != 0.) {
357 ans += fConductivity/(L*L);
358 }
359 ans -= gpow->powZ(10, -2 * sternx);
360 return ans;
361}
362
363/**
364 * Given the Sternheimer parameter l (called 'sternL' here), and that
365 * the l_i and adjusted energies have been found with SetupFermiDeltaCalc(),
366 * return the value of delta. Helper function for DoFermiDeltaCalc().
367 */
368G4double G4DensityEffectCalculator::DeltaOnceSolved(G4double sternL)
369{
370 G4double ans = 0.;
371 for(G4int i=0; i<nlev; ++i) {
372 if(sternf[i] > 0.) {
373 ans += sternf[i] * G4Log((gpow->powN(sternl[i], 2)
374 + gpow->powN(sternL, 2))/gpow->powN(sternl[i], 2));
375 }
376 }
377 // sternl for the conduction electrons is sqrt(fConductivity), with
378 // no factor of 2./3 as with the other levels.
379 if(fConductivity > 0) {
380 ans += fConductivity * G4Log((fConductivity
381 + gpow->powN(sternL, 2))/fConductivity);
382 }
383 ans -= gpow->powN(sternL, 2)/(1 + gpow->powZ(10, 2 * sternx));
384 return ans;
385}
const G4int maxWarnings
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
static G4double GetBindingEnergy(G4int Z, G4int SubshellNb)
static G4int GetNumberOfShells(G4int Z)
G4DensityEffectCalculator(const G4Material *, G4int)
G4double ComputeDensityCorrection(G4double x)
G4double GetMeanExcitationEnergy() const
G4double GetDensityCorrection(G4double x) const
G4double GetPlasmaEnergy() const
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
const G4Element * GetElement(G4int iel) const
Definition: G4Material.hh:197
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:221
G4double GetFreeElectronDensity() const
Definition: G4Material.hh:174
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:201
const G4String & GetName() const
Definition: G4Material.hh:172
static G4NistManager * Instance()
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:225
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:162