Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
LorentzVectorC.cc
Go to the documentation of this file.
1// -*- C++ -*-
2// ---------------------------------------------------------------------------
3//
4// This file is a part of the CLHEP - a Class Library for High Energy Physics.
5//
6// This is the implementation of the HepLorentzVector class:
7// Those methods originating with ZOOM dealing with comparison (other than
8// isSpaceLike, isLightlike, isTimelike, which are in the main part.)
9//
10// 11/29/05 mf in deltaR, replaced the direct subtraction
11// pp.phi() - w.getV().phi() with pp.deltaRPhi(w.getV()) which behaves
12// correctly across the 2pi boundary.
13
15
16#include <cmath>
17#include <iostream>
18
19namespace CLHEP {
20
21//-***********
22// Comparisons
23//-***********
24
26 if ( ee > w.ee ) {
27 return 1;
28 } else if ( ee < w.ee ) {
29 return -1;
30 } else {
31 return ( pp.compare(w.pp) );
32 }
33} /* Compare */
34
36 return (compare(w) > 0);
37}
39 return (compare(w) < 0);
40}
42 return (compare(w) >= 0);
43}
45 return (compare(w) <= 0);
46}
47
48//-********
49// isNear
50// howNear
51//-********
52
54 double epsilon) const {
55 double limit = std::fabs(pp.dot(w.pp));
56 limit += .25*((ee+w.ee)*(ee+w.ee));
57 limit *= epsilon*epsilon;
58 double delta = (pp - w.pp).mag2();
59 delta += (ee-w.ee)*(ee-w.ee);
60 return (delta <= limit );
61} /* isNear() */
62
64 double wdw = std::fabs(pp.dot(w.pp)) + .25*((ee+w.ee)*(ee+w.ee));
65 double delta = (pp - w.pp).mag2() + (ee-w.ee)*(ee-w.ee);
66 if ( (wdw > 0) && (delta < wdw) ) {
67 return std::sqrt (delta/wdw);
68 } else if ( (wdw == 0) && (delta == 0) ) {
69 return 0;
70 } else {
71 return 1;
72 }
73} /* howNear() */
74
75//-*********
76// isNearCM
77// howNearCM
78//-*********
79
81 (const HepLorentzVector & w, double epsilon) const {
82
83 double tTotal = (ee + w.ee);
84 Hep3Vector vTotal (pp + w.pp);
85 double vTotal2 = vTotal.mag2();
86
87 if ( vTotal2 >= tTotal*tTotal ) {
88 // Either one or both vectors are spacelike, or the dominant T components
89 // are in opposite directions. So boosting and testing makes no sense;
90 // but we do consider two exactly equal vectors to be equal in any frame,
91 // even if they are spacelike and can't be boosted to a CM frame.
92 return (*this == w);
93 }
94
95 if ( vTotal2 == 0 ) { // no boost needed!
96 return (isNear(w, epsilon));
97 }
98
99 // Find the boost to the CM frame. We know that the total vector is timelike.
100
101 double tRecip = 1./tTotal;
102 Hep3Vector bboost ( vTotal * (-tRecip) );
103
104 //-| Note that you could do pp/t and not be terribly inefficient since
105 //-| SpaceVector/t itself takes 1/t and multiplies. The code here saves
106 //-| a redundant check for t=0.
107
108 // Boost both vectors. Since we have the same boost, there is no need
109 // to repeat the beta and gamma calculation; and there is no question
110 // about beta >= 1. That is why we don't just call w.boosted().
111
112 double b2 = vTotal2*tRecip*tRecip;
113
114 double ggamma = std::sqrt(1./(1.-b2));
115 double boostDotV1 = bboost.dot(pp);
116 double gm1_b2 = (ggamma-1)/b2;
117
118 HepLorentzVector w1 ( pp + ((gm1_b2)*boostDotV1+ggamma*ee) * bboost,
119 ggamma * (ee + boostDotV1) );
120
121 double boostDotV2 = bboost.dot(w.pp);
122 HepLorentzVector w2 ( w.pp + ((gm1_b2)*boostDotV2+ggamma*w.ee) * bboost,
123 ggamma * (w.ee + boostDotV2) );
124
125 return (w1.isNear(w2, epsilon));
126
127} /* isNearCM() */
128
130
131 double tTotal = (ee + w.ee);
132 Hep3Vector vTotal (pp + w.pp);
133 double vTotal2 = vTotal.mag2();
134
135 if ( vTotal2 >= tTotal*tTotal ) {
136 // Either one or both vectors are spacelike, or the dominant T components
137 // are in opposite directions. So boosting and testing makes no sense;
138 // but we do consider two exactly equal vectors to be equal in any frame,
139 // even if they are spacelike and can't be boosted to a CM frame.
140 if (*this == w) {
141 return 0;
142 } else {
143 return 1;
144 }
145 }
146
147 if ( vTotal2 == 0 ) { // no boost needed!
148 return (howNear(w));
149 }
150
151 // Find the boost to the CM frame. We know that the total vector is timelike.
152
153 double tRecip = 1./tTotal;
154 Hep3Vector bboost ( vTotal * (-tRecip) );
155
156 //-| Note that you could do pp/t and not be terribly inefficient since
157 //-| SpaceVector/t itself takes 1/t and multiplies. The code here saves
158 //-| a redundant check for t=0.
159
160 // Boost both vectors. Since we have the same boost, there is no need
161 // to repeat the beta and gamma calculation; and there is no question
162 // about beta >= 1. That is why we don't just call w.boosted().
163
164 double b2 = vTotal2*tRecip*tRecip;
165// if ( b2 >= 1 ) { // NaN-proofing
166// std::cerr << "HepLorentzVector::howNearCM() - "
167// << "boost vector in howNearCM appears to be tachyonic" << std::endl;
168// }
169 double ggamma = std::sqrt(1./(1.-b2));
170 double boostDotV1 = bboost.dot(pp);
171 double gm1_b2 = (ggamma-1)/b2;
172
173 HepLorentzVector w1 ( pp + ((gm1_b2)*boostDotV1+ggamma*ee) * bboost,
174 ggamma * (ee + boostDotV1) );
175
176 double boostDotV2 = bboost.dot(w.pp);
177 HepLorentzVector w2 ( w.pp + ((gm1_b2)*boostDotV2+ggamma*w.ee) * bboost,
178 ggamma * (w.ee + boostDotV2) );
179
180 return (w1.howNear(w2));
181
182} /* howNearCM() */
183
184//-************
185// deltaR
186// isParallel
187// howParallel
188// howLightlike
189//-************
190
191double HepLorentzVector::deltaR ( const HepLorentzVector & w ) const {
192
193 double a = eta() - w.eta();
194 double b = pp.deltaPhi(w.getV());
195
196 return std::sqrt ( a*a + b*b );
197
198} /* deltaR */
199
200// If the difference (in the Euclidean norm) of the normalized (in Euclidean
201// norm) 4-vectors is small, then those 4-vectors are considered nearly
202// parallel.
203
205 double norm = euclideanNorm();
206 double wnorm = w.euclideanNorm();
207 if ( norm == 0 ) {
208 if ( wnorm == 0 ) {
209 return true;
210 } else {
211 return false;
212 }
213 }
214 if ( wnorm == 0 ) {
215 return false;
216 }
217 HepLorentzVector w1 = *this / norm;
218 HepLorentzVector w2 = w / wnorm;
219 return ( (w1-w2).euclideanNorm2() <= epsilon*epsilon );
220} /* isParallel */
221
222
224
225 double norm = euclideanNorm();
226 double wnorm = w.euclideanNorm();
227 if ( norm == 0 ) {
228 if ( wnorm == 0 ) {
229 return 0;
230 } else {
231 return 1;
232 }
233 }
234 if ( wnorm == 0 ) {
235 return 1;
236 }
237
238 HepLorentzVector w1 = *this / norm;
239 HepLorentzVector w2 = w / wnorm;
240 double x1 = (w1-w2).euclideanNorm();
241 return (x1 < 1) ? x1 : 1;
242
243} /* howParallel */
244
246 double m1 = std::fabs(restMass2());
247 double twoT2 = 2*ee*ee;
248 if (m1 < twoT2) {
249 return m1/twoT2;
250 } else {
251 return 1;
252 }
253} /* HowLightlike */
254
255} // namespace CLHEP
G4double epsilon(G4double density, G4double temperature)
double mag2() const
double dot(const Hep3Vector &) const
double deltaPhi(const Hep3Vector &v2) const
Definition: ThreeVector.cc:135
int compare(const Hep3Vector &v) const
Definition: SpaceVector.cc:118
bool isParallel(const HepLorentzVector &w, double epsilon=tolerance) const
bool isNearCM(const HepLorentzVector &w, double epsilon=tolerance) const
Hep3Vector getV() const
int compare(const HepLorentzVector &w) const
double howParallel(const HepLorentzVector &w) const
bool operator<=(const HepLorentzVector &w) const
double restMass2() const
double deltaR(const HepLorentzVector &v) const
double euclideanNorm() const
double howNear(const HepLorentzVector &w) const
double howLightlike() const
double howNearCM(const HepLorentzVector &w) const
bool operator<(const HepLorentzVector &w) const
double euclideanNorm2() const
bool isNear(const HepLorentzVector &w, double epsilon=tolerance) const
bool operator>(const HepLorentzVector &w) const
bool operator>=(const HepLorentzVector &w) const
Definition: DoubConv.h:17