Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionMinusElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsPionMinusElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
32//
33// -------------------------------------------------------------------------------
34// Short description: Interaction cross-sections for the elastic process.
35// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
36// -------------------------------------------------------------------------------
37//
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4PionMinus.hh"
44#include "G4Nucleus.hh"
45#include "G4ParticleTable.hh"
46#include "G4NucleiProperties.hh"
47#include "G4IonTable.hh"
48
49#include "G4Log.hh"
50#include "G4Exp.hh"
51#include "G4Pow.hh"
52
53// factory
55//
57
59{
60 lPMin=-8.; //Min tabulated logarithmMomentum(D)
61 lPMax= 8.; //Max tabulated logarithmMomentum(D)
62 dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTable(D)
63 onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi)(L)
64 lastSIG=0.; //Last calculated cross section (L)
65 lastLP=-10.;//Last log(mom_of IncidentHadron)(L)
66 lastTM=0.; //Last t_maximum (L)
67 theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
68 theS1=0.; //TheLastMantissa of 1st difr.Max(L)
69 theB1=0.; //TheLastSlope of 1st difruct.Max(L)
70 theS2=0.; //TheLastMantissa of 2nd difr.Max(L)
71 theB2=0.; //TheLastSlope of 2nd difruct.Max(L)
72 theS3=0.; //TheLastMantissa of 3d difr. Max(L)
73 theB3=0.; //TheLastSlope of 3d difruct. Max(L)
74 theS4=0.; //TheLastMantissa of 4th difr.Max(L)
75 theB4=0.; //TheLastSlope of 4th difruct.Max(L)
76 lastTZ=0; // Last atomic number of the target
77 lastTN=0; // Last # of neutrons in the target
78 lastPIN=0.; // Last initialized max momentum
79 lastCST=0; // Elastic cross-section table
80 lastPAR=0; // Parameters ForFunctionCalculation
81 lastSST=0; // E-dep of SqardSlope of 1st difMax
82 lastS1T=0; // E-dep of mantissa of 1st dif.Max
83 lastB1T=0; // E-dep of the slope of 1st difMax
84 lastS2T=0; // E-dep of mantissa of 2nd difrMax
85 lastB2T=0; // E-dep of the slope of 2nd difMax
86 lastS3T=0; // E-dep of mantissa of 3d difr.Max
87 lastB3T=0; // E-dep of the slope of 3d difrMax
88 lastS4T=0; // E-dep of mantissa of 4th difrMax
89 lastB4T=0; // E-dep of the slope of 4th difMax
90 lastN=0; // The last N of calculated nucleus
91 lastZ=0; // The last Z of calculated nucleus
92 lastP=0.; // LastUsed in CrossSection Momentum
93 lastTH=0.; // Last threshold momentum
94 lastCS=0.; // Last value of the Cross Section
95 lastI=0; // The last position in the DAMDB
96}
97
99{
100 std::vector<G4double*>::iterator pos;
101 for (pos=CST.begin(); pos<CST.end(); pos++)
102 { delete [] *pos; }
103 CST.clear();
104 for (pos=PAR.begin(); pos<PAR.end(); pos++)
105 { delete [] *pos; }
106 PAR.clear();
107 for (pos=SST.begin(); pos<SST.end(); pos++)
108 { delete [] *pos; }
109 SST.clear();
110 for (pos=S1T.begin(); pos<S1T.end(); pos++)
111 { delete [] *pos; }
112 S1T.clear();
113 for (pos=B1T.begin(); pos<B1T.end(); pos++)
114 { delete [] *pos; }
115 B1T.clear();
116 for (pos=S2T.begin(); pos<S2T.end(); pos++)
117 { delete [] *pos; }
118 S2T.clear();
119 for (pos=B2T.begin(); pos<B2T.end(); pos++)
120 { delete [] *pos; }
121 B2T.clear();
122 for (pos=S3T.begin(); pos<S3T.end(); pos++)
123 { delete [] *pos; }
124 S3T.clear();
125 for (pos=B3T.begin(); pos<B3T.end(); pos++)
126 { delete [] *pos; }
127 B3T.clear();
128 for (pos=S4T.begin(); pos<S4T.end(); pos++)
129 { delete [] *pos; }
130 S4T.clear();
131 for (pos=B4T.begin(); pos<B4T.end(); pos++)
132 { delete [] *pos; }
133 B4T.clear();
134}
135
136void
138{
139 outFile << "G4ChipsPionMinusElasticXS provides the elastic cross\n"
140 << "section for pion- nucleus scattering as a function of incident\n"
141 << "momentum. The cross section is calculated using M. Kossov's\n"
142 << "CHIPS parameterization of cross section data.\n";
143}
144
145
147 const G4Element*,
148 const G4Material*)
149{
150 return true;
151}
152
153// The main member function giving the collision cross section (P is in IU, CS is in mb)
154// Make pMom in independent units ! (Now it is MeV)
156 const G4Isotope*,
157 const G4Element*,
158 const G4Material*)
159{
160 G4double pMom=Pt->GetTotalMomentum();
161 G4int tgN = A - tgZ;
162
163 return GetChipsCrossSection(pMom, tgZ, tgN, -212);
164}
165
167{
168
169 G4double pEn=pMom;
170 G4bool fCS = false;
171 onlyCS=fCS;
172
173 G4bool in=false; // By default the isotope must be found in the AMDB
174 lastP = 0.; // New momentum history (nothing to compare with)
175 lastN = tgN; // The last N of the calculated nucleus
176 lastZ = tgZ; // The last Z of the calculated nucleus
177 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
178 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
179 { // The nucleus with projPDG is found in AMDB
180 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
181 {
182 lastI=i;
183 lastTH =colTH[i]; // Last THreshold (A-dependent)
184 if(pEn<=lastTH)
185 {
186 return 0.; // Energy is below the Threshold value
187 }
188 lastP =colP [i]; // Last Momentum (A-dependent)
189 lastCS =colCS[i]; // Last CrossSect (A-dependent)
190 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
191 if(lastP == pMom) // Do not recalculate
192 {
193 CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // Update param's only
194 return lastCS*millibarn; // Use theLastCS
195 }
196 in = true; // This is the case when the isotop is found in DB
197 // Momentum pMom is in IU ! @@ Units
198 lastCS=CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // read & update
199 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
200 {
201 lastTH=pEn;
202 }
203 break; // Go out of the LOOP with found lastI
204 }
205 } // End of attampt to find the nucleus in DB
206 if(!in) // This nucleus has not been calculated previously
207 {
208 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
209 lastCS=CalculateCrossSection(fCS,0,lastI,-211,lastZ,lastN,pMom);//calculate&create
210 if(lastCS<=0.)
211 {
212 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
213 if(pEn>lastTH)
214 {
215 lastTH=pEn;
216 }
217 }
218 colN.push_back(tgN);
219 colZ.push_back(tgZ);
220 colP.push_back(pMom);
221 colTH.push_back(lastTH);
222 colCS.push_back(lastCS);
223 return lastCS*millibarn;
224 } // End of creation of the new set of parameters
225 else
226 {
227 colP[lastI]=pMom;
228 colCS[lastI]=lastCS;
229 }
230 return lastCS*millibarn;
231}
232
233// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
234// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
235G4double G4ChipsPionMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,G4int I,
236 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
237{
238 G4double pMom=pIU/GeV; // All calculations are in GeV
239 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
240 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation
241 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
242 {
243 if(F<0) // the AMDB must be loded
244 {
245 lastPIN = PIN[I]; // Max log(P) initialised for this table set
246 lastPAR = PAR[I]; // Pointer to the parameter set
247 lastCST = CST[I]; // Pointer to the total sross-section table
248 lastSST = SST[I]; // Pointer to the first squared slope
249 lastS1T = S1T[I]; // Pointer to the first mantissa
250 lastB1T = B1T[I]; // Pointer to the first slope
251 lastS2T = S2T[I]; // Pointer to the second mantissa
252 lastB2T = B2T[I]; // Pointer to the second slope
253 lastS3T = S3T[I]; // Pointer to the third mantissa
254 lastB3T = B3T[I]; // Pointer to the rhird slope
255 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
256 lastB4T = B4T[I]; // Pointer to the 4-th slope
257 }
258 if(lastLP>lastPIN && lastLP<lPMax)
259 {
260 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
261 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
262 }
263 }
264 else // This isotope wasn't initialized => CREATE
265 {
266 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
267 lastPAR[nLast]=0; // Initialization for VALGRIND
268 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
269 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
270 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
271 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
272 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
273 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
274 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
275 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
276 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
277 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
278 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
279 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
280 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
281 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
282 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
283 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
284 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
285 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
286 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
287 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
288 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
289 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
290 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
291 } // End of creation/update of the new set of parameters and tables
292 // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
293 if(lastLP>lastPIN && lastLP<lPMax)
294 {
295 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
296 }
297 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
298 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
299 {
300 if(lastLP==lastPIN)
301 {
302 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
303 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
304 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
305 lastSIG = lastCST[blast];
306 if(!onlyCS) // Skip the differential cross-section parameters
307 {
308 theSS = lastSST[blast];
309 theS1 = lastS1T[blast];
310 theB1 = lastB1T[blast];
311 theS2 = lastS2T[blast];
312 theB2 = lastB2T[blast];
313 theS3 = lastS3T[blast];
314 theB3 = lastB3T[blast];
315 theS4 = lastS4T[blast];
316 theB4 = lastB4T[blast];
317 }
318 }
319 else
320 {
321 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
322 G4int blast=static_cast<int>(shift); // the lower bin number
323 if(blast<0) blast=0;
324 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
325 shift-=blast; // step inside the unit bin
326 G4int lastL=blast+1; // the upper bin number
327 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
328 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
329 if(!onlyCS) // Skip the differential cross-section parameters
330 {
331 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
332 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
333 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
334 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
335 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
336 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
337 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
338 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
339 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
340 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
341 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
342 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
343 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
344 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
345 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
346 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
347 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
348 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
349 }
350 }
351 }
352 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
353 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
354 return lastSIG;
355}
356
357// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
358G4double G4ChipsPionMinusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
359 G4int tgZ, G4int tgN)
360{
361 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
362 static const G4double pwd=2727;
363 const G4int n_pimpel=38; // #of parameters for pp-elastic (<nPoints=128)
364 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10-11-12-
365 G4double pimp_el[n_pimpel]={1.27,1.53,.0676,3.5,.36,.04,.017,.0025,.0557,2.4,7.,.7,.6,
366 .05,5.,74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,
367 .46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
368 // -13-14--15--16--17-18--19--20--21- -22- -23- -24- -25- -26-
369 // -27--28- -29- -30- -31- -32- -33- -34- -35- -36- -37-
370 if(PDG ==-211)
371 {
372 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
373 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
374 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
375 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
376 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
377 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
378 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
379 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
380 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
381 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
382 //
383 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
384 {
385 if ( tgZ == 1 && tgN == 0 )
386 {
387 for (G4int ip=0; ip<n_pimpel; ip++) lastPAR[ip]=pimp_el[ip]; // PiMinus+P
388 }
389 else
390 {
391 G4double a=tgZ+tgN;
392 G4double sa=std::sqrt(a);
393 G4double ssa=std::sqrt(sa);
394 G4double asa=a*sa;
395 G4double a2=a*a;
396 G4double a3=a2*a;
397 G4double a4=a3*a;
398 G4double a5=a4*a;
399 G4double a6=a4*a2;
400 G4double a7=a6*a;
401 G4double a8=a7*a;
402 G4double a9=a8*a;
403 G4double a10=a5*a5;
404 G4double a12=a6*a6;
405 G4double a14=a7*a7;
406 G4double a16=a8*a8;
407 G4double a17=a16*a;
408 //G4double a20=a16*a4;
409 G4double a32=a16*a16;
410 // Reaction cross-section parameters (pel=peh_fit.f)
411 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
412 lastPAR[1]=a/(1./4.4+1./a); // p2
413 lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33); // p3
414 lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
415 lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2); // p5
416 lastPAR[5]=0.; // p6 not used
417 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
418 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
419 lastPAR[8]=0.; // p9 not used
420 // @@ the differential cross-section is parameterized separately for A>6 & A<7
421 if(a<6.5)
422 {
423 G4double a28=a16*a12;
424 // The main pre-exponent (pel_sg)
425 lastPAR[ 9]=4000*a; // p1
426 lastPAR[10]=1.2e7*a8+380*a17; // p2
427 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
428 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
429 lastPAR[13]=.28*a; // p5
430 lastPAR[14]=1.2*a2+2.3; // p6
431 lastPAR[15]=3.8/a; // p7
432 // The main slope (pel_sl)
433 lastPAR[16]=.01/(1.+.0024*a5); // p1
434 lastPAR[17]=.2*a; // p2
435 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
436 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
437 // The main quadratic (pel_sh)
438 lastPAR[20]=2.25*a3; // p1
439 lastPAR[21]=18.; // p2
440 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
441 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
442 // The 1st max pre-exponent (pel_qq)
443 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
444 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
445 lastPAR[26]=.0006*a3; // p3
446 // The 1st max slope (pel_qs)
447 lastPAR[27]=10.+4.e-8*a12*a; // p1
448 lastPAR[28]=.114; // p2
449 lastPAR[29]=.003; // p3
450 lastPAR[30]=2.e-23; // p4
451 // The effective pre-exponent (pel_ss)
452 lastPAR[31]=1./(1.+.0001*a8); // p1
453 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
454 lastPAR[33]=.03; // p3
455 // The effective slope (pel_sb)
456 lastPAR[34]=a/2; // p1
457 lastPAR[35]=2.e-7*a4; // p2
458 lastPAR[36]=4.; // p3
459 lastPAR[37]=64./a3; // p4
460 // The gloria pre-exponent (pel_us)
461 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1
462 lastPAR[39]=20.*G4Exp(.45*asa); // p2
463 lastPAR[40]=7.e3+2.4e6/a5; // p3
464 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4
465 lastPAR[42]=2.5*a; // p5
466 // The gloria slope (pel_ub)
467 lastPAR[43]=920.+.03*a8*a3; // p1
468 lastPAR[44]=93.+.0023*a12; // p2
469 }
470 else
471 {
472 G4double p1a10=2.2e-28*a10;
473 G4double r4a16=6.e14/a16;
474 G4double s4a16=r4a16*r4a16;
475 // a24
476 // a36
477 // The main pre-exponent (peh_sg)
478 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1
479 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2
480 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
481 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
482 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
483 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
484 // The main slope (peh_sl)
485 lastPAR[15]=400./a12+2.e-22*a9; // p1
486 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
487 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
488 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
489 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
490 lastPAR[20]=9.+100./a; // p6
491 // The main quadratic (peh_sh)
492 lastPAR[21]=.002*a3+3.e7/a6; // p1
493 lastPAR[22]=7.e-15*a4*asa; // p2
494 lastPAR[23]=9000./a4; // p3
495 // The 1st max pre-exponent (peh_qq)
496 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
497 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
498 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
499 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
500 // The 1st max slope (peh_qs)
501 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
502 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2
503 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
504 lastPAR[31]=100./asa; // p4
505 // The 2nd max pre-exponent (peh_ss)
506 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
507 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
508 lastPAR[34]=1.3+3.e5/a4; // p3
509 lastPAR[35]=500./(a2+50.)+3; // p4
510 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
511 // The 2nd max slope (peh_sb)
512 lastPAR[37]=.4*asa+3.e-9*a6; // p1
513 lastPAR[38]=.0005*a5; // p2
514 lastPAR[39]=.002*a5; // p3
515 lastPAR[40]=10.; // p4
516 // The effective pre-exponent (peh_us)
517 lastPAR[41]=.05+.005*a; // p1
518 lastPAR[42]=7.e-8/sa; // p2
519 lastPAR[43]=.8*sa; // p3
520 lastPAR[44]=.02*sa; // p4
521 lastPAR[45]=1.e8/a3; // p5
522 lastPAR[46]=3.e32/(a32+1.e32); // p6
523 // The effective slope (peh_ub)
524 lastPAR[47]=24.; // p1
525 lastPAR[48]=20./sa; // p2
526 lastPAR[49]=7.e3*a/(sa+1.); // p3
527 lastPAR[50]=900.*sa/(1.+500./a3); // p4
528 }
529 // Parameter for lowEnergyNeutrons
530 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
531 }
532 lastPAR[nLast]=pwd;
533 // and initialize the zero element of the table
534 G4double lp=lPMin; // ln(momentum)
535 G4bool memCS=onlyCS; // ??
536 onlyCS=false;
537 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
538 onlyCS=memCS;
539 lastSST[0]=theSS;
540 lastS1T[0]=theS1;
541 lastB1T[0]=theB1;
542 lastS2T[0]=theS2;
543 lastB2T[0]=theB2;
544 lastS3T[0]=theS3;
545 lastB3T[0]=theB3;
546 lastS4T[0]=theS4;
547 lastB4T[0]=theB4;
548 }
549 if(LP>ILP)
550 {
551 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
552 if(ini<0) ini=0;
553 if(ini<nPoints)
554 {
555 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
556 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
557 if(fin>=ini)
558 {
559 G4double lp=0.;
560 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
561 {
562 lp=lPMin+ip*dlnP; // ln(momentum)
563 G4bool memCS=onlyCS;
564 onlyCS=false;
565 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
566 onlyCS=memCS;
567 lastSST[ip]=theSS;
568 lastS1T[ip]=theS1;
569 lastB1T[ip]=theB1;
570 lastS2T[ip]=theS2;
571 lastB2T[ip]=theB2;
572 lastS3T[ip]=theS3;
573 lastB3T[ip]=theB3;
574 lastS4T[ip]=theS4;
575 lastB4T[ip]=theB4;
576 }
577 return lp;
578 }
579 else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
580 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
581 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
582 }
583 else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
584 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
585 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
586 }
587 }
588 else
589 {
590 // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
591 // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
592 // throw G4QException("G4ChipsPionMinusElasticXS::GetPTables:onlyPipA implemented");
594 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
595 << ", while it is defined only for PDG=-211 (pi-)" << G4endl;
596 G4Exception("G4ChipsPionMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
597 FatalException, ed);
598 }
599 return ILP;
600}
601
602// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
604{
605 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
606 static const G4double third=1./3.;
607 static const G4double fifth=1./5.;
608 static const G4double sevth=1./7.;
609 if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExT:PDG="<<PDG<<G4endl;
610 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
611 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
612 G4double q2=0.;
613 if(tgZ==1 && tgN==0) // ===> p+p=p+p
614 {
615 G4double E1=lastTM*theB1;
616 G4double R1=(1.-G4Exp(-E1));
617 G4double E2=lastTM*theB2;
618 G4double R2=(1.-G4Exp(-E2*E2*E2));
619 G4double E3=lastTM*theB3;
620 G4double R3=(1.-G4Exp(-E3));
621 G4double I1=R1*theS1/theB1;
622 G4double I2=R2*theS2;
623 G4double I3=R3*theS3;
624 G4double I12=I1+I2;
625 G4double rand=(I12+I3)*G4UniformRand();
626 if (rand<I1 )
627 {
628 G4double ran=R1*G4UniformRand();
629 if(ran>1.) ran=1.;
630 q2=-G4Log(1.-ran)/theB1;
631 }
632 else if(rand<I12)
633 {
634 G4double ran=R2*G4UniformRand();
635 if(ran>1.) ran=1.;
636 q2=-G4Log(1.-ran);
637 if(q2<0.) q2=0.;
638 q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
639 }
640 else
641 {
642 G4double ran=R3*G4UniformRand();
643 if(ran>1.) ran=1.;
644 q2=-G4Log(1.-ran)/theB3;
645 }
646 }
647 else
648 {
649 G4double a=tgZ+tgN;
650 G4double E1=lastTM*(theB1+lastTM*theSS);
651 G4double R1=(1.-G4Exp(-E1));
652 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
653 G4double tm2=lastTM*lastTM;
654 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
655 if(a>6.5)E2*=tm2; // for heavy nuclei
656 G4double R2=(1.-G4Exp(-E2));
657 G4double E3=lastTM*theB3;
658 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
659 G4double R3=(1.-G4Exp(-E3));
660 G4double E4=lastTM*theB4;
661 G4double R4=(1.-G4Exp(-E4));
662 G4double I1=R1*theS1;
663 G4double I2=R2*theS2;
664 G4double I3=R3*theS3;
665 G4double I4=R4*theS4;
666 G4double I12=I1+I2;
667 G4double I13=I12+I3;
668 G4double rand=(I13+I4)*G4UniformRand();
669 if(rand<I1)
670 {
671 G4double ran=R1*G4UniformRand();
672 if(ran>1.) ran=1.;
673 q2=-G4Log(1.-ran)/theB1;
674 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
675 }
676 else if(rand<I12)
677 {
678 G4double ran=R2*G4UniformRand();
679 if(ran>1.) ran=1.;
680 q2=-G4Log(1.-ran)/theB2;
681 if(q2<0.) q2=0.;
682 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
683 else q2=G4Pow::GetInstance()->powA(q2,fifth);
684 }
685 else if(rand<I13)
686 {
687 G4double ran=R3*G4UniformRand();
688 if(ran>1.) ran=1.;
689 q2=-G4Log(1.-ran)/theB3;
690 if(q2<0.) q2=0.;
691 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
692 }
693 else
694 {
695 G4double ran=R4*G4UniformRand();
696 if(ran>1.) ran=1.;
697 q2=-G4Log(1.-ran)/theB4;
698 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
699 }
700 }
701 if(q2<0.) q2=0.;
702 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
703 if(q2>lastTM)
704 {
705 q2=lastTM;
706 }
707 return q2*GeVSQ;
708}
709
710// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
711G4double G4ChipsPionMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
712{
713 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
714 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetSlope:onlCS=true"<<G4endl;
715 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
716 if(PDG !=-211)
717 {
718 // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
719 // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
720 // throw G4QException("G4ChipsPionMinusElasticXS::GetSlope: pipA are implemented");
722 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
723 << ", while it is defined only for PDG=-211" << G4endl;
724 G4Exception("G4ChipsPionMinusElasticXS::GetSlope()", "HAD_CHPS_0000",
725 FatalException, ed);
726 }
727 if(theB1<0.) theB1=0.;
728 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
729 return theB1/GeVSQ;
730}
731
732// Returns half max(Q2=-t) in independent units (MeV^2)
733G4double G4ChipsPionMinusElasticXS::GetHMaxT()
734{
735 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
736 return lastTM*HGeVSQ;
737}
738
739// lastLP is used, so calculating tables, one need to remember and then recover lastLP
740G4double G4ChipsPionMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
741 G4int tgN)
742{
743 if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinusElasticXS::GetTabV: PDG="<<PDG<<G4endl;
744
745 //AR-24Apr2018 Switch to allow transuranic elements
746 const G4bool isHeavyElementAllowed = true;
747 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
748 {
749 G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
750 return 0.;
751 }
752 G4int iZ=tgZ-1; // Z index
753 if(iZ<0)
754 {
755 iZ=0; // conversion of the neutron target to the proton target
756 tgZ=1;
757 tgN=0;
758 }
759 G4double p=G4Exp(lp); // momentum
760 G4double sp=std::sqrt(p); // sqrt(p)
761 G4double p2=p*p;
762 G4double p3=p2*p;
763 G4double p4=p3*p;
764 if ( tgZ == 1 && tgN == 0 ) // PiMin+P
765 {
766 G4double dl2=lp-lastPAR[14];
767 theSS=lastPAR[37];
768 theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1.+lastPAR[17]/p4/p)+
769 (lastPAR[18]/p2+lastPAR[19]*p)/(p4+lastPAR[20]*sp);
770 theB1=lastPAR[21]*G4Pow::GetInstance()->powA(p,lastPAR[22])/(1.+lastPAR[23]/p3);
771 theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]*p);
772 theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[29]/sp);
773 theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastPAR[32]*p2+lastPAR[33]);
774 theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[36]);
775 theS4=0.;
776 theB4=0.;
777 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
778 G4double lr=lp+lastPAR[0]; // lr
779 G4double ld=lp-lastPAR[14];
780 G4double dl3=lp+lastPAR[4]; // lm
781 G4double dl4=lp-lastPAR[6]; // lh
782//G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastPAR[6] "<<lastPAR[6]<<" lastPAR[7] "<<lastPAR[7]<<G4endl;
783 return lastPAR[1]/(lr*lr+lastPAR[2])+
784 (lastPAR[8]*ld*ld+lastPAR[9]+lastPAR[10]/sp)/(1.+lastPAR[11]/p4)+
785 lastPAR[12]/(dl3*dl3+lastPAR[5])+lastPAR[13]/(dl4*dl4+lastPAR[7]);
786 }
787 else
788 {
789 G4double p5=p4*p;
790 G4double p6=p5*p;
791 G4double p8=p6*p2;
792 G4double p10=p8*p2;
793 G4double p12=p10*p2;
794 G4double p16=p8*p8;
795 //G4double p24=p16*p8;
796 G4double dl=lp-5.;
797 G4double a=tgZ+tgN;
798 G4double pah=G4Pow::GetInstance()->powA(p,a/2);
799 G4double pa=pah*pah;
800 G4double pa2=pa*pa;
801 if(a<6.5)
802 {
803 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
804 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
805 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
806 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
807 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
808 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
809 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
810 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
811 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
812 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
813 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
814 }
815 else
816 {
817 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
818 lastPAR[13]/(p5+lastPAR[14]/p16);
819 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
820 lastPAR[17]/(1.+lastPAR[18]/p4);
821 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
822 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
823 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
824 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
825 lastPAR[33]/(1.+lastPAR[34]/p6);
826 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
827 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
828 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
829 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
830 }
831 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
832 // p1 p2 p3
833 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
834 lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
835 // p4 p5 p7 p8
836 }
837 return 0.;
838} // End of GetTableValues
839
840// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
841G4double G4ChipsPionMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
842 G4double pP)
843{
844 static const G4double mPi= G4PionMinus::PionMinus()->GetPDGMass()*.001; // MeV to GeV
845 static const G4double mPi2= mPi*mPi;
846
847 G4double pP2=pP*pP; // squared momentum of the projectile
848 if(tgZ || tgN>-1) // ---> pipA
849 {
850 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
851
852 G4double dmt=mt+mt;
853 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds
854 return dmt*dmt*pP2/mds;
855 }
856 else
857 {
859 ed << "PDG = " << PDG << ",Z = " << tgZ << ",N = " << tgN
860 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
861 G4Exception("G4ChipsPionMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
862 FatalException, ed);
863 return 0;
864 }
865}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual void CrossSectionDescription(std::ostream &) const
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230