59 theABLAModel(new
G4Abla(volant, ablaResult)),
86 if (isInitialised)
return;
112 pzRem, (
G4int)eventNumber, SRem);
119 toG4Particle(ablaResult->
avv[j], ablaResult->
zvv[j], ablaResult->
svv[j],
125 result->push_back(product);
149 else if(
A > 0 &&
Z > 0 &&
A >
Z )
156 G4cout <<
"Can't convert particle with A=" <<
A <<
", Z=" <<
Z <<
", S=" <<
S
157 <<
" to G4ParticleDefinition, trouble ahead" <<
G4endl;
163 G4cout <<
"Can't convert particle with A=" <<
A <<
", Z=" <<
Z <<
", S=" <<
S
164 <<
" to G4ParticleDefinition, trouble ahead" <<
G4endl;
189 outFile <<
"ABLA++ does not provide an implementation of the ApplyYourself method!\n\n";
195 <<
"ABLA++ is a statistical model for nuclear de-excitation. It simulates\n"
196 <<
"the gamma emission and the evaporation of neutrons, light charged\n"
197 <<
"particles and IMFs, as well as fission where applicable. The code\n"
198 <<
"included in Geant4 is a C++ translation of the original Fortran\n"
199 <<
"code ABLA07. Although the model has been recently extended to\n"
200 <<
"hypernuclei by including the evaporation of lambda particles.\n"
201 <<
"More details about the physics are available in the Geant4\n"
202 <<
"Physics Reference Manual and in the reference articles.\n\n"
204 <<
"(1) A. Kelic, M. V. Ricciardi, and K. H. Schmidt, in Proceedings of "
206 <<
"ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions,\n"
207 <<
"ICTP Trieste, Italy, 4–8 February 2008, edited by D. Filges, S. Leray, "
209 <<
"A. Mengoni, A. Stanculescu, and G. Mank (IAEA INDC(NDS)-530, Vienna, "
210 "2008), pp. 181–221.\n\n"
211 <<
"(2) J.L. Rodriguez-Sanchez, J.-C. David et al., Phys. Rev. C 98, "
G4double S(G4double temp)
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4GLOB_DLL std::ostream G4cout
virtual void BuildPhysicsTable(const G4ParticleDefinition &) final
virtual void DeExciteModelDescription(std::ostream &outFile) const
virtual void InitialiseModel() final
virtual void ModelDescription(std::ostream &outFile) const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)
G4AblaInterface(G4ExcitationHandler *ptr=nullptr)
virtual ~G4AblaInterface()
void DeexcitationAblaxx(G4int nucleusA, G4int nucleusZ, G4double excitationEnergy, G4double angularMomentum, G4double momX, G4double momY, G4double momZ, G4int eventnumber)
static G4Deuteron * Deuteron()
static G4DoubleHyperDoubleNeutron * Definition()
static G4DoubleHyperH4 * Definition()
G4double GetExcitationEnergy() const
const G4LorentzVector & GetMomentum() const
G4int GetNumberOfLambdas() const
G4ThreeVector GetAngularMomentum() const
const G4String & GetModelName() const
static G4HyperAlpha * Definition()
static G4HyperH4 * Definition()
static G4HyperHe5 * Definition()
static G4HyperTriton * Definition()
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4IonTable * GetIonTable()
static G4Lambda * Lambda()
static G4Neutron * Neutron()
static G4int GetModelID(const G4int modelIndex)
static G4PionMinus * PionMinus()
static G4PionPlus * PionPlus()
static G4PionZero * PionZero()
static G4Proton * Proton()
void SetCreatorModelID(const G4int mod)
static G4Triton * Triton()
G4ExcitationHandler * GetExcitationHandler() const
void SetExcitationHandler(G4ExcitationHandler *ptr)
G4double enerj[VARNTPSIZE]
G4double pylab[VARNTPSIZE]
G4double pzlab[VARNTPSIZE]
G4double pxlab[VARNTPSIZE]
G4double energy(const ThreeVector &p, const G4double m)