Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
SpaceVectorP.cc
Go to the documentation of this file.
1// -*- C++ -*-
2// ---------------------------------------------------------------------------
3//
4// This file is a part of the CLHEP - a Class Library for High Energy Physics.
5//
6// SpaceVector
7//
8// This is the implementation of the subset of those methods of the Hep3Vector
9// class which originated from the ZOOM SpaceVector class *and* which involve
10// intrinsic properties or propeties relative to a second vector.
11//
12
14
15#include <cmath>
16
17namespace CLHEP {
18
19//-********************************
20// - 5 -
21// Intrinsic properties of a vector
22// and properties relative to a direction
23//
24//-********************************
25
26double Hep3Vector::beta() const {
27 double b = std::sqrt(mag2());
28// if (b >= 1) {
29// std::cerr << "Hep3Vector::beta() - "
30// << "Beta taken for Hep3Vector of at least unit length" << std::endl;
31// }
32 return b;
33}
34
35double Hep3Vector::gamma() const {
36 double bbeta = std::sqrt(mag2());
37// if (bbeta == 1) {
38// std::cerr << "Hep3Vector::gamma() - "
39// << "Gamma taken for Hep3Vector of unit magnitude -- infinite result"
40// << std::endl;
41// }
42// if (bbeta > 1) {
43// std::cerr << "Hep3Vector::gamma() - "
44// << "Gamma taken for Hep3Vector of more than unit magnitude -- \n"
45// << "the sqrt function would return NAN" << std::endl;
46// }
47 return 1/std::sqrt(1-bbeta*bbeta);
48}
49
50double Hep3Vector::rapidity() const {
51// if (std::fabs(z()) == 1) {
52// std::cerr << "Hep3Vector::rapidity() - "
53// << "Rapidity in Z direction taken for Hep3Vector with |Z| = 1 -- \n"
54// << "the log should return infinity" <, std::endl;
55// }
56// if (std::fabs(z()) > 1) {
57// std::cerr << "Hep3Vector::rapidity() - "
58// << "Rapidity in Z direction taken for Hep3Vector with |Z| > 1 -- \n"
59// << "the log would return a NAN" << std::endl;
60// }
61 // Want inverse std::tanh(dz):
62 return (.5 * std::log((1+z())/(1-z())) );
63}
64
66 double b = beta();
67// if (b == 1) {
68// std::cerr << "Hep3Vector::coLinearRapidity() - "
69// << "Co-linear Rapidity taken for Hep3Vector of unit length -- \n"
70// << "the log should return infinity" << std::endl;
71// }
72// if (b > 1) {
73// std::cerr << "Hep3Vector::coLinearRapidity() - "
74// << "Co-linear Rapidity taken for Hep3Vector of more than unit length -- \n"
75// << "the log would return a NAN" << std::endl;
76// }
77 // Want inverse std::tanh(b):
78 return (.5 * std::log((1+b)/(1-b)) );
79}
80
81//-***********************************************
82// Other properties relative to a reference vector
83//-***********************************************
84
86 double mag2v2 = v2.mag2();
87 if (mag2v2 == 0) {
88 std::cerr << "Hep3Vector::project() - "
89 << "Attempt to take projection of vector against zero reference vector"
90 << std::endl;
91 return project();
92 }
93 return ( v2 * (dot(v2)/mag2v2) );
94}
95
96double Hep3Vector::rapidity(const Hep3Vector & v2) const {
97 double vmag = v2.mag();
98 if ( vmag == 0 ) {
99 std::cerr << "Hep3Vector::rapidity() - "
100 << "Rapidity taken with respect to zero vector" << std::endl;
101 return 0;
102 }
103 double z1 = dot(v2)/vmag;
104// if (std::fabs(z1) >= 1) {
105// std::cerr << "Hep3Vector::rapidity() - "
106// << "Rapidity taken for too large a Hep3Vector "
107// << "-- would return infinity or NAN" << std::endl;
108// }
109 // Want inverse std::tanh(z):
110 return (.5 * std::log((1+z1)/(1-z1)) );
111}
112
113double Hep3Vector::eta(const Hep3Vector & v2) const {
114 // Defined as -std::log ( std::tan ( .5* theta(u) ) );
115 //
116 // Quicker is to use cosTheta:
117 // std::tan (theta/2) = std::sin(theta)/(1 + std::cos(theta))
118
119 double r1 = getR();
120 double v2r = v2.mag();
121 if ( (r1 == 0) || (v2r == 0) ) {
122 std::cerr << "Hep3Vector::eta() - "
123 << "Cannot find pseudorapidity of a zero vector relative to a vector"
124 << std::endl;
125 return 0.;
126 }
127 double c = dot(v2)/(r1*v2r);
128 if ( c >= 1 ) {
129 c = 1; //-| We don't want to return NAN because of roundoff
130 std::cerr << "Hep3Vector::eta() - "
131 << "Pseudorapidity of vector relative to parallel vector -- \n"
132 << "will give infinite result" << std::endl;
133 // We can just go on; tangent will be 0, so
134 // std::log (tangent) will be -INFINITY, so result
135 // will be +INFINITY.
136 }
137 if ( c <= -1 ) {
138 std::cerr << "Hep3Vector::eta() - "
139 << "Pseudorapidity of vector relative to anti-parallel vector -- \n"
140 << "will give negative infinite result"<< std::endl;
141 //-| We don't want to return NAN because of roundoff
142 return ( negativeInfinity() );
143 // If we just went on, the tangent would be NAN
144 // so return would be NAN. But the proper limit
145 // of tan is +Infinity, so the return should be
146 // -INFINITY.
147 }
148
149 double tangent = std::sqrt (1-c*c) / ( 1 + c );
150 return (- std::log (tangent));
151
152} /* eta (u) */
153
154
155} // namespace CLHEP
double beta() const
Definition: SpaceVectorP.cc:26
double z() const
double eta() const
double mag2() const
double getR() const
double dot(const Hep3Vector &) const
double negativeInfinity() const
Definition: SpaceVector.cc:279
double mag() const
double rapidity() const
Definition: SpaceVectorP.cc:50
double coLinearRapidity() const
Definition: SpaceVectorP.cc:65
double gamma() const
Definition: SpaceVectorP.cc:35
Hep3Vector project() const
Definition: DoubConv.h:17