Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UrbanMscModel Class Reference

#include <G4UrbanMscModel.hh>

+ Inheritance diagram for G4UrbanMscModel:

Public Member Functions

 G4UrbanMscModel (const G4String &nam="UrbanMsc")
 
 ~G4UrbanMscModel () override
 
void Initialise (const G4ParticleDefinition *, const G4DataVector &) override
 
void StartTracking (G4Track *) override
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) override
 
G4ThreeVectorSampleScattering (const G4ThreeVector &, G4double safety) override
 
G4double ComputeTruePathLengthLimit (const G4Track &track, G4double &currentMinimalStep) override
 
G4double ComputeGeomPathLength (G4double truePathLength) override
 
G4double ComputeTrueStepLength (G4double geomStepLength) override
 
G4double ComputeTheta0 (G4double truePathLength, G4double KineticEnergy)
 
G4UrbanMscModeloperator= (const G4UrbanMscModel &right)=delete
 
 G4UrbanMscModel (const G4UrbanMscModel &)=delete
 
- Public Member Functions inherited from G4VMscModel
 G4VMscModel (const G4String &nam)
 
 ~G4VMscModel () override
 
virtual G4double ComputeTruePathLengthLimit (const G4Track &track, G4double &stepLimit)=0
 
virtual G4double ComputeGeomPathLength (G4double truePathLength)=0
 
virtual G4double ComputeTrueStepLength (G4double geomPathLength)=0
 
virtual G4ThreeVectorSampleScattering (const G4ThreeVector &, G4double safety)=0
 
void InitialiseParameters (const G4ParticleDefinition *)
 
void DumpParameters (std::ostream &out) const
 
void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double tmax) override
 
void SetStepLimitType (G4MscStepLimitType)
 
void SetLateralDisplasmentFlag (G4bool val)
 
void SetRangeFactor (G4double)
 
void SetGeomFactor (G4double)
 
void SetSkin (G4double)
 
void SetLambdaLimit (G4double)
 
void SetSafetyFactor (G4double)
 
void SetSampleZ (G4bool)
 
G4VEnergyLossProcessGetIonisation () const
 
void SetIonisation (G4VEnergyLossProcess *, const G4ParticleDefinition *part)
 
G4double ComputeSafety (const G4ThreeVector &position, G4double limit=DBL_MAX)
 
G4double ComputeGeomLimit (const G4Track &, G4double &presafety, G4double limit)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetEnergy (const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy, G4double logKinEnergy)
 
G4VMscModeloperator= (const G4VMscModel &right)=delete
 
 G4VMscModel (const G4VMscModel &)=delete
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void FillNumberOfSecondaries (G4int &numberOfTriplets, G4int &numberOfRecoil)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementGetCurrentElement (const G4Material *mat=nullptr) const
 
G4int SelectRandomAtomNumber (const G4Material *) const
 
const G4IsotopeGetCurrentIsotope (const G4Element *elm=nullptr) const
 
G4int SelectIsotopeNumber (const G4Element *) const
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4VMscModel
G4ParticleChangeForMSCGetParticleChangeForMSC (const G4ParticleDefinition *p=nullptr)
 
G4double ConvertTrueToGeom (G4double &tLength, G4double &gLength)
 
void SetUseSplineForMSC (G4bool val)
 
- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 
- Protected Attributes inherited from G4VMscModel
G4double facrange = 0.04
 
G4double facgeom = 2.5
 
G4double facsafety = 0.6
 
G4double skin = 1.0
 
G4double dtrl = 0.05
 
G4double lambdalimit
 
G4double geomMin
 
G4double geomMax
 
G4ThreeVector fDisplacement
 
G4MscStepLimitType steppingAlgorithm
 
G4bool samplez = false
 
G4bool latDisplasment = true
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4PhysicsTablexSectionTable = nullptr
 
const G4MaterialpBaseMaterial = nullptr
 
const std::vector< G4double > * theDensityFactor = nullptr
 
const std::vector< G4int > * theDensityIdx = nullptr
 
G4double inveplus
 
G4double pFactor = 1.0
 
size_t currentCoupleIndex = 0
 
size_t basedCoupleIndex = 0
 
G4bool lossFlucFlag = true
 

Detailed Description

Definition at line 69 of file G4UrbanMscModel.hh.

Constructor & Destructor Documentation

◆ G4UrbanMscModel() [1/2]

G4UrbanMscModel::G4UrbanMscModel ( const G4String nam = "UrbanMsc")
explicit

Definition at line 81 of file G4UrbanMscModel.cc.

82 : G4VMscModel(nam)
83{
84 masslimite = 0.6*CLHEP::MeV;
85 fr = 0.02;
86 taubig = 8.0;
87 tausmall = 1.e-16;
88 taulim = 1.e-6;
89 currentTau = taulim;
90 tlimitminfix = 0.01*CLHEP::nm;
91 tlimitminfix2 = 1.*CLHEP::nm;
92 stepmin = tlimitminfix;
93 smallstep = 1.e10;
94 currentRange = 0. ;
95 rangeinit = 0.;
96 tlimit = 1.e10*CLHEP::mm;
97 tlimitmin = 10.*tlimitminfix;
98 tgeom = 1.e50*CLHEP::mm;
99 geombig = tgeom;
100 geommin = 1.e-3*CLHEP::mm;
101 geomlimit = geombig;
102 presafety = 0.*CLHEP::mm;
103
104 particle = nullptr;
105
106 positron = G4Positron::Positron();
107 rndmEngineMod = G4Random::getTheEngine();
108
109 firstStep = true;
110 insideskin = false;
111 latDisplasmentbackup = false;
112 dispAlg96 = true;
113
114 drr = 0.35;
115 finalr = 10.*CLHEP::um;
116
117 tlow = 5.*CLHEP::keV;
118 invmev = 1.0/CLHEP::MeV;
119
120 skindepth = skin*stepmin;
121
122 mass = CLHEP::proton_mass_c2;
123 charge = chargeSquare = 1.0;
124 currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength
125 = zPathLength = par1 = par2 = par3 = rndmarray[0] = rndmarray[1] = 0;
126 currentLogKinEnergy = LOG_EKIN_MIN;
127
128 idx = 0;
129 fParticleChange = nullptr;
130 couple = nullptr;
131}
static G4Positron * Positron()
Definition: G4Positron.cc:93
G4double skin
Definition: G4VMscModel.hh:202
#define LOG_EKIN_MIN
Definition: templates.hh:98

◆ ~G4UrbanMscModel()

G4UrbanMscModel::~G4UrbanMscModel ( )
override

Definition at line 135 of file G4UrbanMscModel.cc.

136{
137 if(isFirstInstance) {
138 for(auto & ptr : msc) { delete ptr; }
139 msc.clear();
140 }
141}

◆ G4UrbanMscModel() [2/2]

G4UrbanMscModel::G4UrbanMscModel ( const G4UrbanMscModel )
delete

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4UrbanMscModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition particle,
G4double  KineticEnergy,
G4double  AtomicNumber,
G4double  AtomicWeight = 0.,
G4double  cut = 0.,
G4double  emax = DBL_MAX 
)
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 180 of file G4UrbanMscModel.cc.

185{
186 static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
187
188 static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38.,47.,
189 50., 56., 64., 74., 79., 82. };
190
191 // corr. factors for e-/e+ lambda for T <= Tlim
192 static const G4double celectron[15][22] =
193 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
194 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
195 1.112,1.108,1.100,1.093,1.089,1.087 },
196 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
197 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
198 1.109,1.105,1.097,1.090,1.086,1.082 },
199 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
200 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
201 1.131,1.124,1.113,1.104,1.099,1.098 },
202 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
203 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
204 1.112,1.105,1.096,1.089,1.085,1.098 },
205 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
206 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
207 1.073,1.070,1.064,1.059,1.056,1.056 },
208 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
209 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
210 1.074,1.070,1.063,1.059,1.056,1.052 },
211 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
212 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
213 1.068,1.064,1.059,1.054,1.051,1.050 },
214 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
215 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
216 1.039,1.037,1.034,1.031,1.030,1.036 },
217 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
218 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
219 1.031,1.028,1.024,1.022,1.021,1.024 },
220 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
221 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
222 1.020,1.017,1.015,1.013,1.013,1.020 },
223 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
224 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
225 0.995,0.993,0.993,0.993,0.993,1.011 },
226 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
227 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
228 0.974,0.972,0.973,0.974,0.975,0.987 },
229 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
230 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
231 0.950,0.947,0.949,0.952,0.954,0.963 },
232 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
233 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
234 0.941,0.938,0.940,0.944,0.946,0.954 },
235 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
236 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
237 0.933,0.930,0.933,0.936,0.939,0.949 }};
238
239 static const G4double cpositron[15][22] = {
240 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
241 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
242 1.131,1.126,1.117,1.108,1.103,1.100 },
243 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
244 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
245 1.138,1.132,1.122,1.113,1.108,1.102 },
246 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
247 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
248 1.203,1.190,1.173,1.159,1.151,1.145 },
249 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
250 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
251 1.225,1.210,1.191,1.175,1.166,1.174 },
252 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
253 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
254 1.217,1.203,1.184,1.169,1.160,1.151 },
255 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
256 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
257 1.237,1.222,1.201,1.184,1.174,1.159 },
258 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
259 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
260 1.252,1.234,1.212,1.194,1.183,1.170 },
261 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
262 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
263 1.254,1.237,1.214,1.195,1.185,1.179 },
264 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
265 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
266 1.312,1.288,1.258,1.235,1.221,1.205 },
267 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
268 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
269 1.320,1.294,1.264,1.240,1.226,1.214 },
270 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
271 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
272 1.328,1.302,1.270,1.245,1.231,1.233 },
273 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
274 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
275 1.361,1.330,1.294,1.267,1.251,1.239 },
276 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
277 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
278 1.409,1.372,1.330,1.298,1.280,1.258 },
279 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
280 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
281 1.442,1.400,1.354,1.319,1.299,1.272 },
282 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
283 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
284 1.456,1.412,1.364,1.328,1.307,1.282 }};
285
286 //data/corrections for T > Tlim
287
288 static const G4double hecorr[15] = {
289 120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
290 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
291 -22.30};
292
293 G4double sigma;
294 SetParticle(part);
295
296 G4double Z23 = G4Pow::GetInstance()->Z23(G4lrint(atomicNumber));
297
298 // correction if particle .ne. e-/e+
299 // compute equivalent kinetic energy
300 // lambda depends on p*beta ....
301
302 G4double eKineticEnergy = kinEnergy;
303
304 if(mass > CLHEP::electron_mass_c2)
305 {
306 G4double TAU = kinEnergy/mass ;
307 G4double c = mass*TAU*(TAU+2.)/(CLHEP::electron_mass_c2*(TAU+1.)) ;
308 G4double w = c-2.;
309 G4double tau = 0.5*(w+std::sqrt(w*w+4.*c)) ;
310 eKineticEnergy = CLHEP::electron_mass_c2*tau ;
311 }
312
313 G4double eTotalEnergy = eKineticEnergy + CLHEP::electron_mass_c2 ;
314 G4double beta2 = eKineticEnergy*(eTotalEnergy+CLHEP::electron_mass_c2)
315 /(eTotalEnergy*eTotalEnergy);
316 G4double bg2 = eKineticEnergy*(eTotalEnergy+CLHEP::electron_mass_c2)
317 /(CLHEP::electron_mass_c2*CLHEP::electron_mass_c2);
318
319 static const G4double epsfactor = 2.*CLHEP::electron_mass_c2*
320 CLHEP::electron_mass_c2*CLHEP::Bohr_radius*CLHEP::Bohr_radius
321 /(CLHEP::hbarc*CLHEP::hbarc);
322 G4double eps = epsfactor*bg2/Z23;
323
324 if (eps<epsmin) sigma = 2.*eps*eps;
325 else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
326 else sigma = G4Log(2.*eps)-1.+1./eps;
327
328 sigma *= chargeSquare*atomicNumber*atomicNumber/(beta2*bg2);
329
330 // interpolate in AtomicNumber and beta2
331 G4double c1,c2,cc1;
332
333 // get bin number in Z
334 G4int iZ = 14;
335 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
336 while ((iZ>=0)&&(Zdat[iZ]>=atomicNumber)) { --iZ; }
337
338 iZ = std::min(std::max(iZ, 0), 13);
339
340 G4double ZZ1 = Zdat[iZ];
341 G4double ZZ2 = Zdat[iZ+1];
342 G4double ratZ = (atomicNumber-ZZ1)*(atomicNumber+ZZ1)/
343 ((ZZ2-ZZ1)*(ZZ2+ZZ1));
344
345 static const G4double Tlim = 10.*CLHEP::MeV;
346 static const G4double sigmafactor =
347 CLHEP::twopi*CLHEP::classic_electr_radius*CLHEP::classic_electr_radius;
348 static const G4double beta2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
349 ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHEP::electron_mass_c2));
350 static const G4double bg2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
351 (CLHEP::electron_mass_c2*CLHEP::electron_mass_c2);
352
353 static const G4double sig0[15] = {
354 0.2672*CLHEP::barn, 0.5922*CLHEP::barn, 2.653*CLHEP::barn, 6.235*CLHEP::barn,
355 11.69*CLHEP::barn , 13.24*CLHEP::barn , 16.12*CLHEP::barn, 23.00*CLHEP::barn,
356 35.13*CLHEP::barn , 39.95*CLHEP::barn , 50.85*CLHEP::barn, 67.19*CLHEP::barn,
357 91.15*CLHEP::barn , 104.4*CLHEP::barn , 113.1*CLHEP::barn};
358
359 static const G4double Tdat[22] = {
360 100*CLHEP::eV, 200*CLHEP::eV, 400*CLHEP::eV, 700*CLHEP::eV,
361 1*CLHEP::keV, 2*CLHEP::keV, 4*CLHEP::keV, 7*CLHEP::keV,
362 10*CLHEP::keV, 20*CLHEP::keV, 40*CLHEP::keV, 70*CLHEP::keV,
363 100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP::keV, 700*CLHEP::keV,
364 1*CLHEP::MeV, 2*CLHEP::MeV, 4*CLHEP::MeV, 7*CLHEP::MeV,
365 10*CLHEP::MeV, 20*CLHEP::MeV};
366
367 if(eKineticEnergy <= Tlim)
368 {
369 // get bin number in T (beta2)
370 G4int iT = 21;
371 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
372 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
373
374 iT = std::min(std::max(iT, 0), 20);
375
376 // calculate betasquare values
377 G4double T = Tdat[iT];
378 G4double E = T + CLHEP::electron_mass_c2;
379 G4double b2small = T*(E+CLHEP::electron_mass_c2)/(E*E);
380
381 T = Tdat[iT+1];
382 E = T + CLHEP::electron_mass_c2;
383 G4double b2big = T*(E+CLHEP::electron_mass_c2)/(E*E);
384 G4double ratb2 = (beta2-b2small)/(b2big-b2small);
385
386 if (charge < 0.)
387 {
388 c1 = celectron[iZ][iT];
389 c2 = celectron[iZ+1][iT];
390 cc1 = c1+ratZ*(c2-c1);
391
392 c1 = celectron[iZ][iT+1];
393 c2 = celectron[iZ+1][iT+1];
394 }
395 else
396 {
397 c1 = cpositron[iZ][iT];
398 c2 = cpositron[iZ+1][iT];
399 cc1 = c1+ratZ*(c2-c1);
400
401 c1 = cpositron[iZ][iT+1];
402 c2 = cpositron[iZ+1][iT+1];
403 }
404 G4double cc2 = c1+ratZ*(c2-c1);
405 sigma *= sigmafactor/(cc1+ratb2*(cc2-cc1));
406 }
407 else
408 {
409 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
410 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
411 if((atomicNumber >= ZZ1) && (atomicNumber <= ZZ2))
412 sigma = c1+ratZ*(c2-c1) ;
413 else if(atomicNumber < ZZ1)
414 sigma = atomicNumber*atomicNumber*c1/(ZZ1*ZZ1);
415 else if(atomicNumber > ZZ2)
416 sigma = atomicNumber*atomicNumber*c2/(ZZ2*ZZ2);
417 }
418 // low energy correction based on theory
419 sigma *= (1.+0.30/(1.+std::sqrt(1000.*eKineticEnergy)));
420
421 return sigma;
422}
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double Z23(G4int Z) const
Definition: G4Pow.hh:125
int G4lrint(double ad)
Definition: templates.hh:134

◆ ComputeGeomPathLength()

G4double G4UrbanMscModel::ComputeGeomPathLength ( G4double  truePathLength)
overridevirtual

Implements G4VMscModel.

Definition at line 675 of file G4UrbanMscModel.cc.

676{
677 lambdaeff = lambda0;
678 par1 = -1. ;
679 par2 = par3 = 0. ;
680
681 // this correction needed to run MSC with eIoni and eBrem inactivated
682 // and makes no harm for a normal run
683 tPathLength = std::min(tPathLength,currentRange);
684
685 // do the true -> geom transformation
686 zPathLength = tPathLength;
687
688 // z = t for very small tPathLength
689 if(tPathLength < tlimitminfix2) return zPathLength;
690
691 /*
692 G4cout << "ComputeGeomPathLength: tpl= " << tPathLength
693 << " R= " << currentRange << " L0= " << lambda0
694 << " E= " << currentKinEnergy << " "
695 << particle->GetParticleName() << G4endl;
696 */
697 G4double tau = tPathLength/lambda0 ;
698
699 if ((tau <= tausmall) || insideskin) {
700 zPathLength = std::min(tPathLength, lambda0);
701
702 } else if (tPathLength < currentRange*dtrl) {
703 zPathLength = (tau < taulim) ? tPathLength*(1.-0.5*tau)
704 : lambda0*(1.-G4Exp(-tau));
705
706 } else if(currentKinEnergy < mass || tPathLength == currentRange) {
707 par1 = 1./currentRange;
708 par2 = currentRange/lambda0;
709 par3 = 1.+par2;
710 if(tPathLength < currentRange) {
711 zPathLength =
712 (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3);
713 } else {
714 zPathLength = 1./(par1*par3);
715 }
716
717 } else {
718 G4double rfin = std::max(currentRange-tPathLength, 0.01*currentRange);
719 G4double T1 = GetEnergy(particle,rfin,couple);
720 G4double lambda1 = GetTransportMeanFreePath(particle,T1);
721
722 par1 = (lambda0-lambda1)/(lambda0*tPathLength);
723 //G4cout << "par1= " << par1 << " L1= " << lambda1 << G4endl;
724 par2 = 1./(par1*lambda0);
725 par3 = 1.+par2;
726 zPathLength = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3);
727 }
728
729 zPathLength = std::min(zPathLength, lambda0);
730 //G4cout<< "zPathLength= "<< zPathLength<< " L0= " << lambda0 << G4endl;
731 return zPathLength;
732}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double dtrl
Definition: G4VMscModel.hh:203
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:325
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.cc:223

◆ ComputeTheta0()

G4double G4UrbanMscModel::ComputeTheta0 ( G4double  truePathLength,
G4double  KineticEnergy 
)

Definition at line 974 of file G4UrbanMscModel.cc.

976{
977 // for all particles take the width of the central part
978 // from a parametrization similar to the Highland formula
979 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
980 G4double invbetacp = (kinEnergy+mass)/(kinEnergy*(kinEnergy+2.*mass));
981 if(currentKinEnergy != kinEnergy) {
982 invbetacp = std::sqrt(invbetacp*(currentKinEnergy+mass)/
983 (currentKinEnergy*(currentKinEnergy+2.*mass)));
984 }
985 G4double y = trueStepLength/currentRadLength;
986
987 if(fPosiCorrection && particle == positron)
988 {
989 static const G4double xl= 0.6;
990 static const G4double xh= 0.9;
991 static const G4double e = 113.0;
992 G4double corr;
993
994 G4double tau = std::sqrt(currentKinEnergy*kinEnergy)/mass;
995 G4double x = std::sqrt(tau*(tau+2.)/((tau+1.)*(tau+1.)));
996 G4double a = msc[idx]->posa;
997 G4double b = msc[idx]->posb;
998 G4double c = msc[idx]->posc;
999 G4double d = msc[idx]->posd;
1000 if(x < xl) {
1001 corr = a*(1.-G4Exp(-b*x));
1002 } else if(x > xh) {
1003 corr = c+d*G4Exp(e*(x-1.));
1004 } else {
1005 G4double yl = a*(1.-G4Exp(-b*xl));
1006 G4double yh = c+d*G4Exp(e*(xh-1.));
1007 G4double y0 = (yh-yl)/(xh-xl);
1008 G4double y1 = yl-y0*xl;
1009 corr = y0*x+y1;
1010 }
1011 //==================================================================
1012 y *= corr*msc[idx]->pose;
1013 }
1014
1015 static const G4double c_highland = 13.6*CLHEP::MeV;
1016 G4double theta0 = c_highland*std::abs(charge)*std::sqrt(y)*invbetacp;
1017
1018 // correction factor from e- scattering data
1019 theta0 *= (msc[idx]->coeffth1+msc[idx]->coeffth2*G4Log(y));
1020 return theta0;
1021}

◆ ComputeTruePathLengthLimit()

G4double G4UrbanMscModel::ComputeTruePathLengthLimit ( const G4Track track,
G4double currentMinimalStep 
)
overridevirtual

Implements G4VMscModel.

Definition at line 441 of file G4UrbanMscModel.cc.

444{
445 tPathLength = currentMinimalStep;
446 const G4DynamicParticle* dp = track.GetDynamicParticle();
447
449 G4StepStatus stepStatus = sp->GetStepStatus();
450 couple = track.GetMaterialCutsCouple();
451 SetCurrentCouple(couple);
452 idx = couple->GetIndex();
453 currentKinEnergy = dp->GetKineticEnergy();
454 currentLogKinEnergy = dp->GetLogKineticEnergy();
455 currentRange = GetRange(particle,currentKinEnergy,couple,currentLogKinEnergy);
456 lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy,
457 currentLogKinEnergy);
458 tPathLength = std::min(tPathLength,currentRange);
459 /*
460 G4cout << "G4Urban::StepLimit tPathLength= " << tPathLength
461 << " range= " <<currentRange<< " lambda= "<<lambda0
462 <<G4endl;
463 */
464
465 // stop here if small step
466 if(tPathLength < tlimitminfix) {
467 latDisplasment = false;
468 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
469 }
470
471 // upper limit for the straight line distance the particle can travel
472 // for electrons and positrons
473 G4double distance = (mass < masslimite)
474 ? currentRange*msc[idx]->doverra
475 // for muons, hadrons
476 : currentRange*msc[idx]->doverrb;
477
478 presafety = (stepStatus == fGeomBoundary) ? sp->GetSafety()
479 : ComputeSafety(sp->GetPosition(),tPathLength);
480 /*
481 G4cout << "G4Urban::StepLimit tPathLength= "
482 <<tPathLength<<" safety= " << presafety
483 << " range= " <<currentRange<< " lambda= "<<lambda0
484 << " Alg: " << steppingAlgorithm <<G4endl;
485 */
486 // far from geometry boundary
487 if(distance < presafety)
488 {
489 latDisplasment = false;
490 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
491 }
492
493 latDisplasment = latDisplasmentbackup;
494 // ----------------------------------------------------------------
495 // distance to boundary
497 {
498 //compute geomlimit and presafety
499 geomlimit = ComputeGeomLimit(track, presafety, currentRange);
500 /*
501 G4cout << "G4Urban::Distance to boundary geomlimit= "
502 <<geomlimit<<" safety= " << presafety<<G4endl;
503 */
504
505 smallstep += 1.;
506 insideskin = false;
507
508 // initialisation at firs step and at the boundary
509 if(firstStep || (stepStatus == fGeomBoundary))
510 {
511 rangeinit = currentRange;
512 if(!firstStep) { smallstep = 1.; }
513
514 //stepmin ~ lambda_elastic
515 stepmin = ComputeStepmin();
516 skindepth = skin*stepmin;
517 tlimitmin = ComputeTlimitmin();
518 /*
519 G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
520 << " tlimitmin= " << tlimitmin << " geomlimit= "
521 << geomlimit <<G4endl;
522 */
523 // constraint from the geometry
524
525 if((geomlimit < geombig) && (geomlimit > geommin))
526 {
527 // geomlimit is a geometrical step length
528 // transform it to true path length (estimation)
529 if(lambda0 > geomlimit) {
530 geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin;
531 }
532 tgeom = (stepStatus == fGeomBoundary)
533 ? geomlimit/facgeom : 2.*geomlimit/facgeom;
534 }
535 else
536 {
537 tgeom = geombig;
538 }
539 }
540
541 //step limit
542 tlimit = (currentRange > presafety) ?
543 std::max(facrange*rangeinit, facsafety*presafety) : currentRange;
544
545 //lower limit for tlimit
546 tlimit = std::min(std::max(tlimit,tlimitmin), tgeom);
547 /*
548 G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
549 << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
550 */
551 // shortcut
552 if((tPathLength < tlimit) && (tPathLength < presafety) &&
553 (smallstep > skin) && (tPathLength < geomlimit-0.999*skindepth))
554 {
555 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
556 }
557
558 // step reduction near to boundary
559 if(smallstep <= skin)
560 {
561 tlimit = stepmin;
562 insideskin = true;
563 }
564 else if(geomlimit < geombig)
565 {
566 if(geomlimit > skindepth)
567 {
568 tlimit = std::min(tlimit, geomlimit-0.999*skindepth);
569 }
570 else
571 {
572 insideskin = true;
573 tlimit = std::min(tlimit, stepmin);
574 }
575 }
576
577 tlimit = std::max(tlimit, stepmin);
578
579 // randomise if not 'small' step and step determined by msc
580 tPathLength = (tlimit < tPathLength && smallstep > skin && !insideskin)
581 ? std::min(tPathLength, Randomizetlimit())
582 : std::min(tPathLength, tlimit);
583 }
584 // ----------------------------------------------------------------
585 // for simulation with or without magnetic field
586 // there no small step/single scattering at boundaries
587 else if(steppingAlgorithm == fUseSafety)
588 {
589 if(firstStep || (stepStatus == fGeomBoundary)) {
590 rangeinit = currentRange;
591 fr = facrange;
592 // stepping for e+/e- only (not for muons,hadrons)
593 if(mass < masslimite)
594 {
595 rangeinit = std::max(rangeinit, lambda0);
596 if(lambda0 > lambdalimit) {
597 fr *= (0.75+0.25*lambda0/lambdalimit);
598 }
599 }
600 //lower limit for tlimit
601 stepmin = ComputeStepmin();
602 tlimitmin = ComputeTlimitmin();
603 }
604
605 //step limit
606 tlimit = (currentRange > presafety) ?
607 std::max(fr*rangeinit, facsafety*presafety) : currentRange;
608
609 //lower limit for tlimit
610 tlimit = std::max(tlimit, tlimitmin);
611
612 // randomise if step determined by msc
613 tPathLength = (tlimit < tPathLength) ?
614 std::min(tPathLength, Randomizetlimit()) : tPathLength;
615 }
616 // ----------------------------------------------------------------
617 // for simulation with or without magnetic field
618 // there is small step/single scattering at boundaries
620 {
621 if(firstStep || (stepStatus == fGeomBoundary)) {
622 rangeinit = currentRange;
623 fr = facrange;
624 if(mass < masslimite)
625 {
626 if(lambda0 > lambdalimit) {
627 fr *= (0.84+0.16*lambda0/lambdalimit);
628 }
629 }
630 //lower limit for tlimit
631 stepmin = ComputeStepmin();
632 tlimitmin = ComputeTlimitmin();
633 }
634 //step limit
635 tlimit = (currentRange > presafety) ?
636 std::max(fr*rangeinit, facsafety*presafety) : currentRange;
637
638 //lower limit for tlimit
639 tlimit = std::max(tlimit, tlimitmin);
640
641 // condition for tPathLength from drr and finalr
642 if(currentRange > finalr) {
643 G4double tmax = drr*currentRange+
644 finalr*(1.-drr)*(2.-finalr/currentRange);
645 tPathLength = std::min(tPathLength,tmax);
646 }
647
648 // randomise if step determined by msc
649 tPathLength = (tlimit < tPathLength) ?
650 std::min(tPathLength, Randomizetlimit()) : tPathLength;
651 }
652
653 // ----------------------------------------------------------------
654 // simple step limitation
655 else
656 {
657 if (stepStatus == fGeomBoundary)
658 {
659 tlimit = (currentRange > lambda0)
660 ? facrange*currentRange : facrange*lambda0;
661 tlimit = std::max(tlimit, tlimitmin);
662 }
663 // randomise if step determined by msc
664 tPathLength = (tlimit < tPathLength) ?
665 std::min(tPathLength, Randomizetlimit()) : tPathLength;
666 }
667
668 // ----------------------------------------------------------------
669 firstStep = false;
670 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
671}
@ fUseSafety
@ fUseSafetyPlus
@ fUseDistanceToBoundary
G4StepStatus
Definition: G4StepStatus.hh:40
@ fGeomBoundary
Definition: G4StepStatus.hh:43
G4double GetLogKineticEnergy() const
G4double GetKineticEnergy() const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:468
G4double facrange
Definition: G4VMscModel.hh:199
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:296
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.cc:188
G4double lambdalimit
Definition: G4VMscModel.hh:204
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:209
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:286
G4bool latDisplasment
Definition: G4VMscModel.hh:212
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
Definition: G4VMscModel.hh:278
G4double facsafety
Definition: G4VMscModel.hh:201
G4double facgeom
Definition: G4VMscModel.hh:200

◆ ComputeTrueStepLength()

G4double G4UrbanMscModel::ComputeTrueStepLength ( G4double  geomStepLength)
overridevirtual

Implements G4VMscModel.

Definition at line 736 of file G4UrbanMscModel.cc.

737{
738 // step defined other than transportation
739 if(geomStepLength == zPathLength) {
740 //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
741 // << " step= " << geomStepLength << " *** " << G4endl;
742 return tPathLength;
743 }
744
745 zPathLength = geomStepLength;
746
747 // t = z for very small step
748 if(geomStepLength < tlimitminfix2) {
749 tPathLength = geomStepLength;
750
751 // recalculation
752 } else {
753
754 G4double tlength = geomStepLength;
755 if((geomStepLength > lambda0*tausmall) && !insideskin) {
756
757 if(par1 < 0.) {
758 tlength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
759 } else {
760 const G4double par4 = par1*par3;
761 if(par4*geomStepLength < 1.) {
762 tlength = (1.-G4Exp(G4Log(1.-par4*geomStepLength)/par3))/par1;
763 } else {
764 tlength = currentRange;
765 }
766 }
767
768 if(tlength < geomStepLength) { tlength = geomStepLength; }
769 else if(tlength > tPathLength) { tlength = tPathLength; }
770 }
771 tPathLength = tlength;
772 }
773 //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
774 // << " step= " << geomStepLength << " &&& " << G4endl;
775
776 return tPathLength;
777}

◆ Initialise()

void G4UrbanMscModel::Initialise ( const G4ParticleDefinition p,
const G4DataVector  
)
overridevirtual

Implements G4VEmModel.

Definition at line 145 of file G4UrbanMscModel.cc.

147{
148 // set values of some data members
149 SetParticle(p);
150 fParticleChange = GetParticleChangeForMSC(p);
152
153 latDisplasmentbackup = latDisplasment;
155 fPosiCorrection = G4EmParameters::Instance()->MscPositronCorrection();
156
157 // initialise cache only once
158 if(0 == msc.size()) {
159 G4AutoLock l(&theUrbanMutex);
160 if(0 == msc.size()) {
161 isFirstInstance = true;
162 msc.resize(1, nullptr);
163 }
164 l.unlock();
165 }
166 // initialise cache for each new run
167 if(isFirstInstance) { InitialiseModelCache(); }
168
169 /*
170 G4cout << "### G4UrbanMscModel::Initialise done for "
171 << p->GetParticleName() << " type= " << steppingAlgorithm << G4endl;
172 G4cout << " RangeFact= " << facrange << " GeomFact= " << facgeom
173 << " SafetyFact= " << facsafety << " LambdaLim= " << lambdalimit
174 << G4endl;
175 */
176}
G4bool LateralDisplacementAlg96() const
static G4EmParameters * Instance()
G4bool MscPositronCorrection() const
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=nullptr)
Definition: G4VMscModel.cc:77
void InitialiseParameters(const G4ParticleDefinition *)
Definition: G4VMscModel.cc:115

◆ operator=()

G4UrbanMscModel & G4UrbanMscModel::operator= ( const G4UrbanMscModel right)
delete

◆ SampleScattering()

G4ThreeVector & G4UrbanMscModel::SampleScattering ( const G4ThreeVector oldDirection,
G4double  safety 
)
overridevirtual

Implements G4VMscModel.

Definition at line 782 of file G4UrbanMscModel.cc.

784{
785 fDisplacement.set(0.0,0.0,0.0);
786 G4double kinEnergy = currentKinEnergy;
787 if (tPathLength > currentRange*dtrl) {
788 kinEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
789 } else if(tPathLength > currentRange*0.01) {
790 kinEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple,
791 currentLogKinEnergy);
792 }
793
794 if((tPathLength <= tlimitminfix) || (tPathLength < tausmall*lambda0) ||
795 (kinEnergy <= CLHEP::eV)) { return fDisplacement; }
796
797 G4double cth = SampleCosineTheta(tPathLength,kinEnergy);
798
799 // protection against 'bad' cth values
800 if(std::abs(cth) >= 1.0) { return fDisplacement; }
801
802 G4double sth = std::sqrt((1.0 - cth)*(1.0 + cth));
803 G4double phi = CLHEP::twopi*rndmEngineMod->flat();
804 G4ThreeVector newDirection(sth*std::cos(phi),sth*std::sin(phi),cth);
805 newDirection.rotateUz(oldDirection);
806
807 fParticleChange->ProposeMomentumDirection(newDirection);
808 /*
809 G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
810 << " sinTheta= " << sth << " safety(mm)= " << safety
811 << " trueStep(mm)= " << tPathLength
812 << " geomStep(mm)= " << zPathLength
813 << G4endl;
814 */
815
816 if (latDisplasment && currentTau >= tausmall) {
817 if(dispAlg96) { SampleDisplacement(sth, phi); }
818 else { SampleDisplacementNew(cth, phi); }
819 fDisplacement.rotateUz(oldDirection);
820 }
821 return fDisplacement;
822}
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
virtual double flat()=0
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.cc:158
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:208

◆ StartTracking()

void G4UrbanMscModel::StartTracking ( G4Track track)
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 426 of file G4UrbanMscModel.cc.

427{
428 SetParticle(track->GetDynamicParticle()->GetDefinition());
429 firstStep = true;
430 insideskin = false;
431 fr = facrange;
432 tlimit = tgeom = rangeinit = geombig;
433 smallstep = 1.e10;
434 stepmin = tlimitminfix;
435 tlimitmin = 10.*tlimitminfix;
436 rndmEngineMod = G4Random::getTheEngine();
437}
G4ParticleDefinition * GetDefinition() const

The documentation for this class was generated from the following files: