Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TauNeutrinoNucleusProcess.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Geant4 Hadron Inelastic Scattering Process
28//
29// Created from G4MuNeutrinoNucleusProcess
30//
31
32
33#include <iostream>
34#include <typeinfo>
35
37#include "G4SystemOfUnits.hh"
38#include "G4Nucleus.hh"
39#include "G4ProcessManager.hh"
45#include "G4VDiscreteProcess.hh"
46
48//#include "G4NuMuNucleusCcModel.hh"
49//#include "G4NuMuNucleusNcModel.hh"
50
51#include "G4RotationMatrix.hh"
52#include "G4ThreeVector.hh"
53#include "G4AffineTransform.hh"
54#include "G4DynamicParticle.hh"
55#include "G4StepPoint.hh"
56#include "G4VSolid.hh"
57#include "G4LogicalVolume.hh"
58#include "G4SafetyHelper.hh"
60
61///////////////////////////////////////////////////////////////////////////////
62
63
65 : G4HadronicProcess( pName, fHadronInelastic ), isInitialised(false), fBiased(true) // fHadronElastic???
66{
67 lowestEnergy = 1.*keV;
68 fEnvelope = nullptr;
69 fEnvelopeName = anEnvelopeName;
70 fTotXsc = nullptr; // new G4TauNeutrinoNucleusTotXsc();
71 fNuNuclCcBias=1.;
72 fNuNuclNcBias=1.;
73 fNuNuclTotXscBias=1.;
75 safetyHelper->InitialiseHelper();
76}
77
79{
80 if( fTotXsc ) delete fTotXsc;
81}
82
83///////////////////////////////////////////////////////
84
86{
87 fNuNuclTotXscBias = bf;
88
89 fTotXsc = new G4TauNeutrinoNucleusTotXsc();
90 fTotXsc->SetBiasingFactor(bf);
91}
92
93///////////////////////////////////////////////////////
94
96{
97 fNuNuclCcBias = bfCc;
98 fNuNuclNcBias = bfNc;
99
100 fTotXsc = new G4TauNeutrinoNucleusTotXsc();
101 // fTotXsc->SetBiasingFactors(bfCc, bfNc);
102}
103
104//////////////////////////////////////////////////
105
108{
109 //G4cout << "GetMeanFreePath " << aTrack.GetDefinition()->GetParticleName()
110 // << " Ekin= " << aTrack.GetKineticEnergy() << G4endl;
112 G4double totxsc(0.);
113
114 if( rName == fEnvelopeName && fNuNuclTotXscBias > 1.)
115 {
116 totxsc = fNuNuclTotXscBias*
118 aTrack.GetMaterial());
119 }
120 else
121 {
123 aTrack.GetMaterial());
124 }
125 G4double res = (totxsc>0.0) ? 1.0/totxsc : DBL_MAX;
126 //G4cout << " xsection= " << totxsc << G4endl;
127 return res;
128}
129
130///////////////////////////////////////////////////
131
132void G4TauNeutrinoNucleusProcess::ProcessDescription(std::ostream& outFile) const
133{
134
135 outFile << "G4TauNeutrinoNucleusProcess handles the inelastic scattering of \n"
136 << "tau-neutrino on nucleus by invoking the following model(s) and \n"
137 << "cross section(s).\n";
138
139}
140
141///////////////////////////////////////////////////////////////////////
142
145{
146 // track.GetVolume()->GetLogicalVolume()->GetName()
147 // if( track.GetVolume()->GetLogicalVolume() != fEnvelope )
148
150
151 if( rName != fEnvelopeName )
152 {
153 if( verboseLevel > 0 )
154 {
155 G4cout<<"Go out from G4TauNeutrinoNucleusProcess::PostStepDoIt: wrong volume "<<G4endl;
156 }
157 return G4VDiscreteProcess::PostStepDoIt( track, step );
158 }
161 G4double weight = track.GetWeight();
163
164 if( track.GetTrackStatus() != fAlive )
165 {
166 return theTotalResult;
167 }
168 // Next check for illegal track status
169 //
170 if (track.GetTrackStatus() != fAlive &&
171 track.GetTrackStatus() != fSuspend)
172 {
173 if (track.GetTrackStatus() == fStopAndKill ||
176 {
178 ed << "G4TauNeutrinoNucleusProcess: track in unusable state - "
179 << track.GetTrackStatus() << G4endl;
180 ed << "G4TauNeutrinoNucleusProcess: returning unchanged track " << G4endl;
181 DumpState(track,"PostStepDoIt",ed);
182 G4Exception("G4TauNeutrinoNucleusProcess::PostStepDoIt", "had004", JustWarning, ed);
183 }
184 // No warning for fStopButAlive which is a legal status here
185 return theTotalResult;
186 }
187
188 // For elastic scattering, _any_ result is considered an interaction
190
191 G4double kineticEnergy = track.GetKineticEnergy();
192 const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
193 const G4ParticleDefinition* part = dynParticle->GetDefinition();
194 const G4String pName = part->GetParticleName();
195
196 // NOTE: Very low energy scatters were causing numerical (FPE) errors
197 // in earlier releases; these limits have not been changed since.
198
199 if ( kineticEnergy <= lowestEnergy ) return theTotalResult;
200
201 const G4Material* material = track.GetMaterial();
202 G4Nucleus* targNucleus = GetTargetNucleusPointer();
203
204 //////////////// uniform random spread of the neutrino interaction point ////////////
205
206 const G4StepPoint* pPostStepPoint = step.GetPostStepPoint();
207 const G4DynamicParticle* aParticle = track.GetDynamicParticle();
208 G4ThreeVector position = pPostStepPoint->GetPosition(), newPosition=position;
209 G4ParticleMomentum direction = aParticle->GetMomentumDirection();
210
211 if( fNuNuclCcBias > 1.0 || fNuNuclNcBias > 1.0) // = true, if fBiasingfactor != 1., i.e. xsc is biased
212 {
213 const G4RotationMatrix* rotM = pPostStepPoint->GetTouchable()->GetRotation();
214 G4ThreeVector transl = pPostStepPoint->GetTouchable()->GetTranslation();
215 G4AffineTransform transform = G4AffineTransform(rotM,transl);
216 transform.Invert();
217
218 G4ThreeVector localP = transform.TransformPoint(position);
219 G4ThreeVector localV = transform.TransformAxis(direction);
220
221 G4double forward = track.GetVolume()->GetLogicalVolume()->GetSolid()->DistanceToOut(localP, localV);
222 G4double backward = track.GetVolume()->GetLogicalVolume()->GetSolid()->DistanceToOut(localP, -localV);
223
224 G4double distance = forward+backward;
225
226 // G4cout<<distance/cm<<", ";
227
228 // uniform sampling of nu-e interaction point
229 // along neutrino direction in current volume
230
231 G4double range = -backward+G4UniformRand()*distance;
232
233 newPosition = position + range*direction;
234
235 safetyHelper->ReLocateWithinVolume(newPosition);
236
237 theTotalResult->ProposePosition(newPosition); // G4Exception : GeomNav1002
238 }
239 G4HadProjectile theProj( track );
240 G4HadronicInteraction* hadi = nullptr;
241 G4HadFinalState* result = nullptr;
242
243 G4double ccTotRatio = fTotXsc->GetCcTotRatio();
244
245 if( G4UniformRand() < ccTotRatio ) // Cc-model
246 {
247 // Initialize the hadronic projectile from the track
248 thePro.Initialise(track);
249
250 if (pName == "nu_tau" ) hadi = (GetHadronicInteractionList())[0];
251 else hadi = (GetHadronicInteractionList())[2];
252
253 result = hadi->ApplyYourself( thePro, *targNucleus);
254
256
258
259 FillResult(result, track);
260 }
261 else // Nc-model
262 {
263
264 if (pName == "nu_tau" ) hadi = (GetHadronicInteractionList())[1];
265 else hadi = (GetHadronicInteractionList())[3];
266
267 size_t idx = track.GetMaterialCutsCouple()->GetIndex();
268
270
271 hadi->SetRecoilEnergyThreshold(tcut);
272
273 if( verboseLevel > 1 )
274 {
275 G4cout << "G4TauNeutrinoNucleusProcess::PostStepDoIt for "
276 << part->GetParticleName()
277 << " in " << material->GetName()
278 << " Target Z= " << targNucleus->GetZ_asInt()
279 << " A= " << targNucleus->GetA_asInt() << G4endl;
280 }
281 try
282 {
283 result = hadi->ApplyYourself( theProj, *targNucleus);
284 }
285 catch(G4HadronicException & aR)
286 {
288 aR.Report(ed);
289 ed << "Call for " << hadi->GetModelName() << G4endl;
290 ed << " Z= "
291 << targNucleus->GetZ_asInt()
292 << " A= " << targNucleus->GetA_asInt() << G4endl;
293 DumpState(track,"ApplyYourself",ed);
294 ed << " ApplyYourself failed" << G4endl;
295 G4Exception("G4TauNeutrinoNucleusProcess::PostStepDoIt", "had006",
296 FatalException, ed);
297 }
298 // directions
299
300 G4ThreeVector indir = track.GetMomentumDirection();
301 G4double phi = CLHEP::twopi*G4UniformRand();
302 G4ThreeVector it(0., 0., 1.);
303 G4ThreeVector outdir = result->GetMomentumChange();
304
305 if(verboseLevel>1)
306 {
307 G4cout << "Efin= " << result->GetEnergyChange()
308 << " de= " << result->GetLocalEnergyDeposit()
309 << " nsec= " << result->GetNumberOfSecondaries()
310 << " dir= " << outdir
311 << G4endl;
312 }
313 // energies
314
315 G4double edep = result->GetLocalEnergyDeposit();
316 G4double efinal = result->GetEnergyChange();
317
318 if(efinal < 0.0) { efinal = 0.0; }
319 if(edep < 0.0) { edep = 0.0; }
320
321 // NOTE: Very low energy scatters were causing numerical (FPE) errors
322 // in earlier releases; these limits have not been changed since.
323
324 if(efinal <= lowestEnergy)
325 {
326 edep += efinal;
327 efinal = 0.0;
328 }
329 // primary change
330
332
333 G4TrackStatus status = track.GetTrackStatus();
334
335 if(efinal > 0.0)
336 {
337 outdir.rotate(phi, it);
338 outdir.rotateUz(indir);
340 }
341 else
342 {
343 if( part->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
344 {
345 status = fStopButAlive;
346 }
347 else
348 {
349 status = fStopAndKill;
350 }
352 }
353 //G4cout << "Efinal= " << efinal << " TrackStatus= " << status << G4endl;
354
356
357 // recoil
358
359 if( result->GetNumberOfSecondaries() > 0 )
360 {
361 G4DynamicParticle* p = result->GetSecondary(0)->GetParticle();
362
363 if(p->GetKineticEnergy() > tcut)
364 {
367
368 // G4cout << "recoil " << pdir << G4endl;
369 //!! is not needed for models inheriting G4TauNeutrinoNucleus
370
371 pdir.rotate(phi, it);
372 pdir.rotateUz(indir);
373
374 // G4cout << "recoil rotated " << pdir << G4endl;
375
376 p->SetMomentumDirection(pdir);
377
378 // in elastic scattering time and weight are not changed
379
380 G4Track* t = new G4Track(p, track.GetGlobalTime(),
381 track.GetPosition());
382 t->SetWeight(weight);
385 }
386 else
387 {
388 edep += p->GetKineticEnergy();
389 delete p;
390 }
391 }
394 result->Clear();
395 }
396 return theTotalResult;
397}
398
399void
401{
402 if(!isInitialised) {
403 isInitialised = true;
404 // if(G4Neutron::Neutron() == &part) { lowestEnergy = 1.e-6*eV; }
405 }
407}
408
409void
411{
412 lowestEnergy = val;
413}
414
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4ForceCondition
@ fHadronInelastic
G4TrackStatus
@ fKillTrackAndSecondaries
@ fSuspend
@ fAlive
@ fStopAndKill
@ fStopButAlive
@ fPostponeToNextEvent
double G4double
Definition: G4Types.hh:83
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector & rotate(double, const Hep3Vector &)
Definition: ThreeVectorR.cc:24
G4AffineTransform & Invert()
G4ThreeVector TransformPoint(const G4ThreeVector &vec) const
G4ThreeVector TransformAxis(const G4ThreeVector &axis) const
G4double ComputeCrossSection(const G4DynamicParticle *, const G4Material *)
void SetMomentumDirection(const G4ThreeVector &aDirection)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetEnergyChange() const
void SetTrafoToLab(const G4LorentzRotation &aT)
G4double GetLocalEnergyDeposit() const
const G4ThreeVector & GetMomentumChange() const
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
void Initialise(const G4Track &aT)
G4LorentzRotation & GetTrafoToLab()
G4DynamicParticle * GetParticle()
void Report(std::ostream &aS) const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetModelName() const
void SetRecoilEnergyThreshold(G4double val)
void FillResult(G4HadFinalState *aR, const G4Track &aT)
G4HadProjectile thePro
G4Nucleus * GetTargetNucleusPointer()
G4ParticleChange * theTotalResult
std::vector< G4HadronicInteraction * > & GetHadronicInteractionList()
void PreparePhysicsTable(const G4ParticleDefinition &) override
G4CrossSectionDataStore * GetCrossSectionDataStore()
void DumpState(const G4Track &, const G4String &, G4ExceptionDescription &)
G4VSolid * GetSolid() const
G4Region * GetRegion() const
const G4String & GetName() const
Definition: G4Material.hh:172
G4int GetA_asInt() const
Definition: G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
void AddSecondary(G4Track *aSecondary)
void ProposePosition(G4double x, G4double y, G4double z)
void Initialize(const G4Track &) override
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ProcessManager * GetProcessManager() const
const G4String & GetParticleName() const
G4ProcessVector * GetAtRestProcessVector(G4ProcessVectorTypeIndex typ=typeGPIL) const
std::size_t size() const
const std::vector< G4double > * GetEnergyCutsVector(std::size_t pcIdx) const
static G4ProductionCutsTable * GetProductionCutsTable()
const G4String & GetName() const
void ReLocateWithinVolume(const G4ThreeVector &pGlobalPoint)
void InitialiseHelper()
const G4VTouchable * GetTouchable() const
const G4ThreeVector & GetPosition() const
G4VPhysicalVolume * GetPhysicalVolume() const
Definition: G4Step.hh:62
G4StepPoint * GetPreStepPoint() const
G4StepPoint * GetPostStepPoint() const
void PreparePhysicsTable(const G4ParticleDefinition &) override
G4TauNeutrinoNucleusProcess(G4String anEnvelopeName, const G4String &procName="tau-neutrino-nucleus")
void SetBiasingFactors(G4double bfCc, G4double bfNc)
void ProcessDescription(std::ostream &outFile) const override
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep) override
G4double GetMeanFreePath(const G4Track &aTrack, G4double, G4ForceCondition *) override
G4TrackStatus GetTrackStatus() const
G4VPhysicalVolume * GetVolume() const
G4double GetWeight() const
void SetWeight(G4double aValue)
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
static G4TransportationManager * GetTransportationManager()
G4SafetyHelper * GetSafetyHelper() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeWeight(G4double finalWeight)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4LogicalVolume * GetLogicalVolume() const
void ClearNumberOfInteractionLengthLeft()
Definition: G4VProcess.hh:428
G4int verboseLevel
Definition: G4VProcess.hh:360
virtual G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const =0
virtual const G4ThreeVector & GetTranslation(G4int depth=0) const =0
virtual const G4RotationMatrix * GetRotation(G4int depth=0) const =0
#define DBL_MAX
Definition: templates.hh:62