Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SimpleIntegration.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4SimpleIntegration class implementation
27//
28// Author: V.Grichine, 26.03.1997
29// --------------------------------------------------------------------
30
32#include "globals.hh"
33
35 : fFunction(pFunction)
36{}
37
39 G4double pTolerance)
40 : fFunction(pFunction)
41 , fTolerance(pTolerance)
42{}
43
44// Simple integration methods
45
47 G4int iterationNumber)
48{
49 G4double Step = (xFinal - xInitial) / iterationNumber;
50 G4double mean = (fFunction(xInitial) + fFunction(xFinal)) * 0.5;
51 G4double x = xInitial;
52 for(G4int i = 1; i < iterationNumber; ++i)
53 {
54 x += Step;
55 mean += fFunction(x);
56 }
57 return mean * Step;
58}
59
61 G4int iterationNumber)
62{
63 G4double Step = (xFinal - xInitial) / iterationNumber;
64 G4double x = xInitial + 0.5 * Step;
65 G4double mean = fFunction(x);
66 for(G4int i = 1; i < iterationNumber; ++i)
67 {
68 x += Step;
69 mean += fFunction(x);
70 }
71 return mean * Step;
72}
73
75 G4int iterationNumber)
76{
77 G4double x = 0.;
78 static const G4double root = 1.0 / std::sqrt(3.0);
79 G4double Step = (xFinal - xInitial) / (2.0 * iterationNumber);
80 G4double delta = Step * root;
81 G4double mean = 0.0;
82 for(G4int i = 0; i < iterationNumber; ++i)
83 {
84 x = (2 * i + 1) * Step;
85 mean += (fFunction(x + delta) + fFunction(x - delta));
86 }
87 return mean * Step;
88}
89
91 G4int iterationNumber)
92{
93 G4double Step = (xFinal - xInitial) / iterationNumber;
94 G4double x = xInitial;
95 G4double xPlus = xInitial + 0.5 * Step;
96 G4double mean = (fFunction(xInitial) + fFunction(xFinal)) * 0.5;
97 G4double sum = fFunction(xPlus);
98 for(G4int i = 1; i < iterationNumber; ++i)
99 {
100 x += Step;
101 xPlus += Step;
102 mean += fFunction(x);
103 sum += fFunction(xPlus);
104 }
105 mean += 2.0 * sum;
106 return mean * Step / 3.0;
107}
108
109// Adaptive Gauss integration
110
112 G4double xFinal)
113{
114 G4int depth = 0;
115 G4double sum = 0.0;
116 AdaptGauss(xInitial, xFinal, sum, depth);
117 return sum;
118}
119
121{
122 static const G4double root = 1.0 / std::sqrt(3.0);
123
124 G4double xMean = (xInitial + xFinal) / 2.0;
125 G4double Step = (xFinal - xInitial) / 2.0;
126 G4double delta = Step * root;
127 G4double sum = (fFunction(xMean + delta) + fFunction(xMean - delta));
128
129 return sum * Step;
130}
131
133 G4double& sum, G4int& depth)
134{
135 if(depth > fMaxDepth)
136 {
137 G4Exception("G4SimpleIntegration::AdaptGauss()", "Error", FatalException,
138 "Function varies too rapidly !");
139 }
140 G4double xMean = (xInitial + xFinal) / 2.0;
141 G4double leftHalf = Gauss(xInitial, xMean);
142 G4double rightHalf = Gauss(xMean, xFinal);
143 G4double full = Gauss(xInitial, xFinal);
144 if(std::fabs(leftHalf + rightHalf - full) < fTolerance)
145 {
146 sum += full;
147 }
148 else
149 {
150 ++depth;
151 AdaptGauss(xInitial, xMean, sum, depth);
152 AdaptGauss(xMean, xFinal, sum, depth);
153 }
154}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
G4double(*)(G4double) function
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double AdaptGaussIntegration(G4double xInitial, G4double xFinal)
G4double Gauss(G4double xInitial, G4double xFinal, G4int iterationNumber)
G4SimpleIntegration(function pFunction)
G4double Trapezoidal(G4double xInitial, G4double xFinal, G4int iterationNumber)
G4double Simpson(G4double xInitial, G4double xFinal, G4int iterationNumber)
void AdaptGauss(G4double xInitial, G4double xFinal, G4double &sum, G4int &depth)
G4double MidPoint(G4double xInitial, G4double xFinal, G4int iterationNumber)