Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEnp Class Reference

#include <G4LEnp.hh>

+ Inheritance diagram for G4LEnp:

Public Member Functions

 G4LEnp ()
 
 ~G4LEnp () override
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) override
 
G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A) override
 
- Public Member Functions inherited from G4HadronElastic
 G4HadronElastic (const G4String &name="hElasticLHEP")
 
 ~G4HadronElastic () override
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) override
 
G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A) override
 
G4double GetSlopeCof (const G4int pdg)
 
void SetLowestEnergyLimit (G4double value)
 
G4double LowestEnergyLimit () const
 
G4double ComputeMomentumCMS (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
void ModelDescription (std::ostream &) const override
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronElastic
G4double pLocalTmax
 
G4int secID
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 40 of file G4LEnp.hh.

Constructor & Destructor Documentation

◆ G4LEnp()

G4LEnp::G4LEnp ( )
explicit

Definition at line 47 of file G4LEnp.cc.

47 :
48 G4HadronElastic("G4LEnp") // G4HadronicInteraction("G4LEnp")
49{
51 // theParticleChange.SetNumberOfSecondaries(1);
52
53 // SetMinEnergy(10.*MeV);
54 // SetMaxEnergy(1200.*MeV);
55 SetMinEnergy(0.);
56 SetMaxEnergy(5.*GeV);
57}
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static G4int GetModelID(const G4int modelIndex)

◆ ~G4LEnp()

G4LEnp::~G4LEnp ( )
override

Definition at line 59 of file G4LEnp.cc.

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4LEnp::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
overridevirtual

Reimplemented from G4HadronElastic.

Definition at line 65 of file G4LEnp.cc.

66{
68 const G4HadProjectile* aParticle = &aTrack;
69
70 G4double P = aParticle->GetTotalMomentum();
71 G4double Px = aParticle->Get4Momentum().x();
72 G4double Py = aParticle->Get4Momentum().y();
73 G4double Pz = aParticle->Get4Momentum().z();
74 G4double ek = aParticle->GetKineticEnergy();
75 G4ThreeVector theInitial = aParticle->Get4Momentum().vect();
76
77 if (verboseLevel > 1) {
78 G4double E = aParticle->GetTotalEnergy();
79 G4double E0 = aParticle->GetDefinition()->GetPDGMass();
80 G4double Q = aParticle->GetDefinition()->GetPDGCharge();
81 G4int A = targetNucleus.GetA_asInt();
82 G4int Z = targetNucleus.GetZ_asInt();
83 G4cout << "G4LEnp:ApplyYourself: incident particle: "
84 << aParticle->GetDefinition()->GetParticleName() << G4endl;
85 G4cout << "P = " << P/GeV << " GeV/c"
86 << ", Px = " << Px/GeV << " GeV/c"
87 << ", Py = " << Py/GeV << " GeV/c"
88 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
89 G4cout << "E = " << E/GeV << " GeV"
90 << ", kinetic energy = " << ek/GeV << " GeV"
91 << ", mass = " << E0/GeV << " GeV"
92 << ", charge = " << Q << G4endl;
93 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl;
94 G4cout << "A = " << A
95 << ", Z = " << Z
96 << ", atomic mass "
97 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
98 << G4endl;
99 //
100 // GHEISHA ADD operation to get total energy, mass, charge
101 //
102 E += proton_mass_c2;
103 G4double E02 = E*E - P*P;
104 E0 = std::sqrt(std::abs(E02));
105 if (E02 < 0)E0 *= -1;
106 Q += Z;
107 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl;
108 G4cout << "E = " << E/GeV << " GeV"
109 << ", mass = " << E0/GeV << " GeV"
110 << ", charge = " << Q << G4endl;
111 }
112
113 // Find energy bin
114
115 G4int je1 = 0;
116 G4int je2 = NENERGY - 1;
117 ek = ek/GeV;
118 do {
119 G4int midBin = (je1 + je2)/2;
120 if (ek < elab[midBin])
121 je2 = midBin;
122 else
123 je1 = midBin;
124 } while (je2 - je1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
125 G4double delab = elab[je2] - elab[je1];
126
127 // Sample the angle
128
129 G4double sample = G4UniformRand();
130 G4int ke1 = 0;
131 G4int ke2 = NANGLE - 1;
132 G4double dsig = sig[je2][0] - sig[je1][0];
133 G4double rc = dsig/delab;
134 G4double b = sig[je1][0] - rc*elab[je1];
135 G4double sigint1 = rc*ek + b;
136 G4double sigint2 = 0.;
137
138 if (verboseLevel > 1) {
139 G4cout << "sample=" << sample << G4endl
140 << ke1 << " " << ke2 << " "
141 << sigint1 << " " << sigint2 << G4endl;
142 }
143 do {
144 G4int midBin = (ke1 + ke2)/2;
145 dsig = sig[je2][midBin] - sig[je1][midBin];
146 rc = dsig/delab;
147 b = sig[je1][midBin] - rc*elab[je1];
148 G4double sigint = rc*ek + b;
149 if (sample < sigint) {
150 ke2 = midBin;
151 sigint2 = sigint;
152 }
153 else {
154 ke1 = midBin;
155 sigint1 = sigint;
156 }
157 if (verboseLevel > 1) {
158 G4cout << ke1 << " " << ke2 << " "
159 << sigint1 << " " << sigint2 << G4endl;
160 }
161 } while (ke2 - ke1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
162
163 dsig = sigint2 - sigint1;
164 rc = 1./dsig;
165 b = ke1 - rc*sigint1;
166 G4double kint = rc*sample + b;
167 G4double theta = (0.5 + kint)*pi/180.;
168
169 if (verboseLevel > 1) {
170 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl;
171 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl;
172 }
173
174 // Get the target particle
175
176 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
177
178 G4double E1 = aParticle->GetTotalEnergy();
179 G4double M1 = aParticle->GetDefinition()->GetPDGMass();
180 G4double E2 = targetParticle->GetTotalEnergy();
181 G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
182 G4double totalEnergy = E1 + E2;
183 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
184
185 // Transform into centre of mass system
186
187 G4double px = (M2/pseudoMass)*Px;
188 G4double py = (M2/pseudoMass)*Py;
189 G4double pz = (M2/pseudoMass)*Pz;
190 G4double p = std::sqrt(px*px + py*py + pz*pz);
191
192 if (verboseLevel > 1) {
193 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
194 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
195 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
196 << pz/GeV << " " << p/GeV << G4endl;
197 }
198
199 // First scatter w.r.t. Z axis
200 G4double phi = G4UniformRand()*twopi;
201 G4double pxnew = p*std::sin(theta)*std::cos(phi);
202 G4double pynew = p*std::sin(theta)*std::sin(phi);
203 G4double pznew = p*std::cos(theta);
204
205 // Rotate according to the direction of the incident particle
206 if (px*px + py*py > 0) {
207 G4double cost, sint, ph, cosp, sinp;
208 cost = pz/p;
209 sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
210 py < 0 ? ph = 3*halfpi : ph = halfpi;
211 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
212 cosp = std::cos(ph);
213 sinp = std::sin(ph);
214 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
215 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
216 pz = (-sint*pxnew + cost*pznew);
217 }
218 else {
219 px = pxnew;
220 py = pynew;
221 pz = pznew;
222 }
223
224 if (verboseLevel > 1) {
225 G4cout << " AFTER SCATTER..." << G4endl;
226 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
227 << pz/GeV << " " << p/GeV << G4endl;
228 }
229
230 // Transform to lab system
231
232 G4double E1pM2 = E1 + M2;
233 G4double betaCM = P/E1pM2;
234 G4double betaCMx = Px/E1pM2;
235 G4double betaCMy = Py/E1pM2;
236 G4double betaCMz = Pz/E1pM2;
237 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
238
239 if (verboseLevel > 1) {
240 G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
241 << betaCMz << " " << betaCM << G4endl;
242 G4cout << " gammaCM " << gammaCM << G4endl;
243 }
244
245 // Now following GLOREN...
246
247 G4double BETA[5], PA[5], PB[5];
248 BETA[1] = -betaCMx;
249 BETA[2] = -betaCMy;
250 BETA[3] = -betaCMz;
251 BETA[4] = gammaCM;
252
253 //The incident particle...
254
255 PA[1] = px;
256 PA[2] = py;
257 PA[3] = pz;
258 PA[4] = std::sqrt(M1*M1 + p*p);
259
260 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
261 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
262
263 PB[1] = PA[1] + BPGAM * BETA[1];
264 PB[2] = PA[2] + BPGAM * BETA[2];
265 PB[3] = PA[3] + BPGAM * BETA[3];
266 PB[4] = (PA[4] - BETPA) * BETA[4];
267
269 newP->SetDefinition(aParticle->GetDefinition());
270 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
271
272 //The target particle...
273
274 PA[1] = -px;
275 PA[2] = -py;
276 PA[3] = -pz;
277 PA[4] = std::sqrt(M2*M2 + p*p);
278
279 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
280 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
281
282 PB[1] = PA[1] + BPGAM * BETA[1];
283 PB[2] = PA[2] + BPGAM * BETA[2];
284 PB[3] = PA[3] + BPGAM * BETA[3];
285 PB[4] = (PA[4] - BETPA) * BETA[4];
286
287 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
288
289 if (verboseLevel > 1) {
290 G4cout << " particle 1 momentum in LAB "
291 << newP->GetMomentum()*(1./GeV)
292 << " " << newP->GetTotalMomentum()/GeV << G4endl;
293 G4cout << " particle 2 momentum in LAB "
294 << targetParticle->GetMomentum()*(1./GeV)
295 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
296 G4cout << " TOTAL momentum in LAB "
297 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV)
298 << " "
299 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
300 << G4endl;
301 }
302
305 delete newP;
306 theParticleChange.AddSecondary(targetParticle, secID);
307
308 return &theParticleChange;
309}
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector vect() const
const G4ThreeVector & GetMomentumDirection() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
void SetMomentum(const G4ThreeVector &momentum)
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4int GetA_asInt() const
Definition: G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:340
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4Proton * Proton()
Definition: G4Proton.cc:92

◆ SampleInvariantT()

G4double G4LEnp::SampleInvariantT ( const G4ParticleDefinition p,
G4double  plab,
G4int  Z,
G4int  A 
)
overridevirtual

Reimplemented from G4HadronElastic.

Definition at line 315 of file G4LEnp.cc.

317{
318 G4double nMass = p->GetPDGMass(); // 939.565346*MeV;
319 G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass;
320
321 // Find energy bin
322
323 G4int je1 = 0;
324 G4int je2 = NENERGY - 1;
325 ek = ek/GeV;
326
327 do
328 {
329 G4int midBin = (je1 + je2)/2;
330 if (ek < elab[midBin])
331 je2 = midBin;
332 else
333 je1 = midBin;
334 } while (je2 - je1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
335
336 G4double delab = elab[je2] - elab[je1];
337
338 // Sample the angle
339
340 G4double sample = G4UniformRand();
341 G4int ke1 = 0;
342 G4int ke2 = NANGLE - 1;
343 G4double dsig = sig[je2][0] - sig[je1][0];
344 G4double rc = dsig/delab;
345 G4double b = sig[je1][0] - rc*elab[je1];
346 G4double sigint1 = rc*ek + b;
347 G4double sigint2 = 0.;
348
349 do
350 {
351 G4int midBin = (ke1 + ke2)/2;
352 dsig = sig[je2][midBin] - sig[je1][midBin];
353 rc = dsig/delab;
354 b = sig[je1][midBin] - rc*elab[je1];
355 G4double sigint = rc*ek + b;
356
357 if (sample < sigint)
358 {
359 ke2 = midBin;
360 sigint2 = sigint;
361 }
362 else
363 {
364 ke1 = midBin;
365 sigint1 = sigint;
366 }
367 } while (ke2 - ke1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
368
369 dsig = sigint2 - sigint1;
370 rc = 1./dsig;
371 b = ke1 - rc*sigint1;
372
373 G4double kint = rc*sample + b;
374 G4double theta = (0.5 + kint)*pi/180.;
375 G4double t = 0.5*plab*plab*(1-std::cos(theta));
376
377 return t;
378}

The documentation for this class was generated from the following files: