Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DataInterpolation.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4DataInterpolation
27//
28// Class description:
29//
30// The class consists of some methods for data interpolations and
31// extrapolations. The methods based mainly on recommendations given in the
32// book: An introduction to NUMERICAL METHODS IN C++, B.H. Flowers,
33// Claredon Press, Oxford, 1995.
34
35// Author: V.Grichine, 03.04.1997
36// --------------------------------------------------------------------
37#ifndef G4DATAINTERPOLATION_HH
38#define G4DATAINTERPOLATION_HH 1
39
40#include "globals.hh"
41
43{
44 public:
45 G4DataInterpolation(G4double pX[], G4double pY[], G4int number);
46 // Constructor for initializing data members.
47
48 G4DataInterpolation(G4double pX[], G4double pY[], G4int number,
49 G4double pFirstDerStart, G4double pFirstDerFinish);
50 // Constructor for cubic spline interpolation. It creates fSecond Deivative
51 // array as well as fArgument and fFunction.
52
54 // Destructor deletes dynamically created arrays for data members: fArgument,
55 // fFunction and fSecondDerivative, all have dimension of fNumber.
56
59 // Copy constructor and assignement operator not allowed.
60
62 // This function returns the value P(pX), where P(x) is polynom of fNumber-1
63 // degree such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1.
64
65 void PolIntCoefficient(G4double cof[]) const;
66 // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1], this
67 // function calculates an array of coefficients.
68 // The coefficients don't provide usually (fNumber>10) better accuracy for
69 // polynom interpolation, as compared with PolynomInterpolation() function.
70 // They could be used instead for derivate calculations and some other
71 // applications.
72
74 // The function returns diagonal rational function (Bulirsch and Stoer
75 // algorithm of Neville type) Pn(x)/Qm(x) where P and Q are polynoms.
76 // Tests showed the method is not stable and hasn't advantage if compared
77 // with polynomial interpolation.
78
80 // Cubic spline interpolation in point pX for function given by the table:
81 // fArgument, fFunction. The constructor, which creates fSecondDerivative,
82 // must be called before. The function works optimal, if sequential calls
83 // are in random values of pX.
84
85 G4double FastCubicSpline(G4double pX, G4int index) const;
86 // Return cubic spline interpolation in the point pX which is located between
87 // fArgument[index] and fArgument[index+1]. It is usually called in sequence
88 // of known from external analysis values of index.
89
91 // Given argument pX, returns index k, so that pX bracketed by fArgument[k]
92 // and fArgument[k+1].
93
94 void CorrelatedSearch(G4double pX, G4int& index) const;
95 // Given a value pX, returns a value 'index' such that pX is between
96 // fArgument[index] and fArgument[index+1]. fArgument MUST BE MONOTONIC,
97 // either increasing or decreasing. If index = -1 or fNumber, this indicates
98 // that pX is out of range. The value index on input is taken as the initial
99 // approximation for index on output.
100
101 private:
102 // pointers to data table to be interpolated for y[i] and x[i] respectively
103 G4double* fArgument = nullptr;
104 G4double* fFunction = nullptr;
105
106 G4double* fSecondDerivative = nullptr;
107
108 G4int fNumber = 0; // the corresponding table size
109};
110
111#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double RationalPolInterpolation(G4double pX, G4double &deltaY) const
void CorrelatedSearch(G4double pX, G4int &index) const
G4double FastCubicSpline(G4double pX, G4int index) const
G4DataInterpolation(const G4DataInterpolation &)=delete
G4double PolynomInterpolation(G4double pX, G4double &deltaY) const
G4int LocateArgument(G4double pX) const
G4DataInterpolation & operator=(const G4DataInterpolation &)=delete
G4double CubicSplineInterpolation(G4double pX) const
void PolIntCoefficient(G4double cof[]) const