Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNAPTBIonisationModel.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Authors: S. Meylan and C. Villagrasa (IRSN, France)
27// Models come from
28// M. Bug et al, Rad. Phys and Chem. 130, 459-479 (2017)
29//
30
31#ifndef G4DNAPTBIONISATIONMODEL_h
32#define G4DNAPTBIONISATIONMODEL_h 1
33
34#include "G4VDNAModel.hh"
37
39#include "G4Electron.hh"
40#include "G4Proton.hh"
42
44
46#include "G4DNAPTBAugerModel.hh"
47#include "G4NistManager.hh"
48
49/*!
50 * \brief The G4DNAPTBIonisationModel class
51 * Implements the PTB ionisation model.
52 */
54{
55
56public:
57 /*!
58 * \brief G4DNAPTBIonisationModel
59 * Constructor
60 * \param applyToMaterial
61 * \param p
62 * \param nam
63 * \param isAuger
64 */
65 G4DNAPTBIonisationModel(const G4String &applyToMaterial = "all",
66 const G4ParticleDefinition* p = 0,
67 const G4String &nam = "DNAPTBIonisationModel",
68 const G4bool isAuger=true);
69
70 /*!
71 * \brief ~G4DNAPTBIonisationModel
72 * Destructor
73 */
75
76 /*!
77 * \brief Initialise
78 * Method called once at the beginning of the simulation. It is used to setup the list of the materials managed by the model
79 * and the energy limits. All the materials are setup but only a part of them can be activated by the user through the constructor.
80 */
81 virtual void Initialise(const G4ParticleDefinition* particle, const G4DataVector& = *(new G4DataVector()), G4ParticleChangeForGamma* fpChangeForGamme=nullptr);
82
83 /*!
84 * \brief CrossSectionPerVolume
85 * Mandatory for every model the CrossSectionPerVolume method is in charge of returning the
86 * cross section value corresponding to the material, particle and energy current values.
87 * \param material
88 * \param materialName
89 * \param p
90 * \param ekin
91 * \param emin
92 * \param emax
93 * \return the cross section value
94 */
95 virtual G4double CrossSectionPerVolume(const G4Material* material,
96 const G4String& materialName,
97 const G4ParticleDefinition* p,
98 G4double ekin,
99 G4double emin,
100 G4double emax);
101
102 /*!
103 * \brief SampleSecondaries
104 * If the model is selected for the ModelInterface then SampleSecondaries will be called.
105 * The method sets the characteristics of the particles implied with the physical process after the ModelInterface (energy, momentum...).
106 * This method is mandatory for every model.
107 * \param materialName
108 * \param particleChangeForGamma
109 * \param tmin
110 * \param tmax
111 */
112 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
114 const G4String& materialName,
115 const G4DynamicParticle*,
116 G4ParticleChangeForGamma *particleChangeForGamma,
117 G4double tmin,
118 G4double tmax);
119
120protected:
121
122private:
123
124 G4DNAPTBAugerModel* fDNAPTBAugerModel; ///< PTB Auger model instanciated in the constructor and deleted in the destructor of the class
125
126 G4int verboseLevel; ///< verbose level
127
128 G4DNAPTBIonisationStructure ptbStructure; /*!< ptbStructure class which contains the shell binding energies */
129
130 typedef std::map<G4String, std::map<G4String, std::map<double, std::map<double, std::map<double, double> > > > > TriDimensionMap;
131 TriDimensionMap diffCrossSectionData;
132 TriDimensionMap fEnergySecondaryData;
133 std::map<G4String, std::map<G4String, std::vector<double> > > fTMapWithVec;
134 typedef std::map<G4String, std::map<G4String, std::map<double, std::vector<double> > > > VecMap;
135 VecMap fEMapWithVector;
136 typedef std::map<G4String, std::map<G4String, std::map<double, std::map<double, std::vector<double> > > > > VecMapWithShell;
137 VecMapWithShell fProbaShellMap;
138
139 G4double RandomizeEjectedElectronEnergy(G4ParticleDefinition * aParticleDefinition, G4double incomingParticleEnergy, G4int shell, const G4String& materialName);
140 double DifferentialCrossSection(G4ParticleDefinition * aParticleDefinition, G4double k, G4double energyTransfer, G4int shell, const G4String &materialName);
141
142 /*!
143 * \brief RandomizeEjectedElectronEnergyFromCumulated
144 * Uses the cumulated tables to find the energy of the ejected particle (electron)
145 * \param particleDefinition
146 * \param k
147 * \param shell
148 * \param materialName
149 * \return the ejected electron energy
150 */
151 G4double RandomizeEjectedElectronEnergyFromCumulated(G4ParticleDefinition *particleDefinition, G4double k, G4int shell, const G4String& materialName);
152
153 /*!
154 * \brief RandomizeEjectedElectronDirection
155 * Method to calculate the ejected electron direction
156 * \param aParticleDefinition
157 * \param incomingParticleEnergy
158 * \param outgoingParticleEnergy
159 * \param cosTheta
160 * \param phi
161 */
162 void RandomizeEjectedElectronDirection(G4ParticleDefinition * aParticleDefinition, G4double incomingParticleEnergy, G4double
163 outgoingParticleEnergy, G4double & cosTheta, G4double & phi );
164 /*!
165 * \brief ReadDiffCSFile
166 * Method to read the differential cross section files.
167 * \param materialName
168 * \param particleName
169 * \param file
170 * \param scaleFactor
171 */
172 void ReadDiffCSFile(const G4String &materialName, const G4String &particleName, const G4String &file, const G4double scaleFactor);
173
174 /*!
175 * \brief QuadInterpolator
176 * \param e11
177 * \param e12
178 * \param e21
179 * \param e22
180 * \param xs11
181 * \param xs12
182 * \param xs21
183 * \param xs22
184 * \param t1
185 * \param t2
186 * \param t
187 * \param e
188 * \return the interpolated value
189 */
190 G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double xs11, G4double xs12, G4double xs21, G4double xs22, G4double t1, G4double t2, G4double t, G4double e);
191 /*!
192 * \brief LogLogInterpolate
193 * \param e1
194 * \param e2
195 * \param e
196 * \param xs1
197 * \param xs2
198 * \return the interpolate value
199 */
200 G4double LogLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2);
201
202 // copy constructor and hide assignment operator
203 G4DNAPTBIonisationModel(const G4DNAPTBIonisationModel&); // prevent copy-construction
204 G4DNAPTBIonisationModel & operator=(const G4DNAPTBIonisationModel &right); // prevent assignement
205};
206
207//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
208
209#endif
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
The G4DNAPTBAugerModel class Implement the PTB Auger model.
The G4DNAPTBIonisationModel class Implements the PTB ionisation model.
virtual void Initialise(const G4ParticleDefinition *particle, const G4DataVector &= *(new G4DataVector()), G4ParticleChangeForGamma *fpChangeForGamme=nullptr)
Initialise Method called once at the beginning of the simulation. It is used to setup the list of the...
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4String &materialName, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
CrossSectionPerVolume Mandatory for every model the CrossSectionPerVolume method is in charge of retu...
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4String &materialName, const G4DynamicParticle *, G4ParticleChangeForGamma *particleChangeForGamma, G4double tmin, G4double tmax)
SampleSecondaries If the model is selected for the ModelInterface then SampleSecondaries will be call...
virtual ~G4DNAPTBIonisationModel()
~G4DNAPTBIonisationModel Destructor
The G4VDNAModel class.
Definition: G4VDNAModel.hh:50