79 fData = fMaster =
false;
92 outFile <<
"G4NuMuNucleusNcModel is a neutrino-nucleus (neutral current) scattering\n"
93 <<
"model which uses the standard model \n"
94 <<
"transfer parameterization. The model is fully relativistic\n";
106 G4int nSize(0), i(0), j(0), k(0);
110#ifdef G4MULTITHREADED
116#ifdef G4MULTITHREADED
125 std::ostringstream ost1, ost2, ost3, ost4;
126 ost1 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xarraynckr";
128 std::ifstream filein1( ost1.str().c_str() );
134 for( k = 0; k <
fNbin; ++k )
136 for( i = 0; i <=
fNbin; ++i )
144 ost2 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xdistrnckr";
145 std::ifstream filein2( ost2.str().c_str() );
149 for( k = 0; k <
fNbin; ++k )
151 for( i = 0; i <
fNbin; ++i )
159 ost3 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2arraynckr";
160 std::ifstream filein3( ost3.str().c_str() );
164 for( k = 0; k <
fNbin; ++k )
166 for( i = 0; i <=
fNbin; ++i )
168 for( j = 0; j <=
fNbin; ++j )
177 ost4 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2distrnckr";
178 std::ifstream filein4( ost4.str().c_str() );
182 for( k = 0; k <
fNbin; ++k )
184 for( i = 0; i <=
fNbin; ++i )
186 for( j = 0; j <
fNbin; ++j )
256 G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.);
262 G4int pdgP(0), qB(0);
274 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
276 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
279 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
295 if ( lvX.
e() <=
fM1 )
318 eCut = (
fMpi + mTarg)*(
fMpi + mTarg) - (massX + massR)*(massX + massR);
324 if ( lvX.
e() > eCut )
342 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
344 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
346 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
425 fMr = proton_mass_c2;
451 if (
fProton && pName ==
"nu_mu" ) qB = 1;
452 else if( !
fProton && pName ==
"nu_mu" ) qB = 0;
473 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.
AtomicMass(
A,
Z);
474 G4double cost(1.), sint(0.), phi(0.), muMom(0.);
480 if(
A == 1 || nMom == 0. )
512 while( ( abs(
fCosTheta) > 1. ||
fEmu < fMnumu ) && iTer < iTerMax );
514 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
529 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
531 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
532 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
599 while( ( abs(
fCosTheta) > 1. ||
fEmu < fMnumu ) && iTer < iTerMax );
601 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
615 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
617 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
618 muMom = sqrt(
fEmu*
fEmu-fMnumu*fMnumu);
const char * G4FindDataDir(const char *)
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
#define G4MUTEX_INITIALIZER
#define G4MUTEXLOCK(mutex)
#define G4MUTEXUNLOCK(mutex)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
static G4AntiNeutrinoMu * AntiNeutrinoMu()
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4NeutrinoMu * NeutrinoMu()
void CoherentPion(G4LorentzVector &lvP, G4int pdgP, G4Nucleus &targetNucleus)
static G4double fNuMuQarrayKR[50][51][51]
static G4double fNuMuXarrayKR[50][51]
G4double NucleonMomentum(G4Nucleus &targetNucleus)
G4int GetOnePionIndex(G4double energy)
G4double SampleXkr(G4double energy)
G4double SampleQkr(G4double energy, G4double xx)
G4double GetNuMuOnePionProb(G4int index, G4double energy)
static G4double fNuMuXdistrKR[50][50]
static G4double fNuMuQdistrKR[50][51][50]
G4double CalculateQEratioA(G4int Z, G4int A, G4double energy, G4int nepdg)
void ClusterDecay(G4LorentzVector &lvX, G4int qX)
void FinalBarion(G4LorentzVector &lvB, G4int qB, G4int pdgB)
G4NuMuNucleusNcModel(const G4String &name="NuMuNuclNcModel")
virtual G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &) const
void SampleLVkr(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void InitialiseModel()
virtual ~G4NuMuNucleusNcModel()
G4double AtomicMass(const G4double A, const G4double Z, const G4int numberOfLambdas=0) const
G4double GetPDGMass() const
G4int GetPDGEncoding() const
const G4String & GetParticleName() const
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()