Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolarizedAnnihilationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// -------------------------------------------------------------------
27//
28// Geant4 Class file
29//
30// File name: G4PolarizedAnnihilationModel
31//
32// Author: Andreas Schaelicke
33//
34// Class Description:
35// Implementation of polarized gamma Annihilation scattering on free electron
36
38
39#include "G4Gamma.hh"
45#include "G4StokesVector.hh"
46#include "G4TrackStatus.hh"
47
49 const G4ParticleDefinition* p, const G4String& nam)
50 : G4eeToTwoGammaModel(p, nam)
51 , fCrossSectionCalculator(nullptr)
52 , fParticleChange(nullptr)
53 , fVerboseLevel(0)
54{
55 fCrossSectionCalculator = new G4PolarizedAnnihilationXS();
56 fBeamPolarization = G4StokesVector::ZERO;
57 fTargetPolarization = G4StokesVector::ZERO;
58 fFinalGamma1Polarization = G4StokesVector::ZERO;
59 fFinalGamma2Polarization = G4StokesVector::ZERO;
60}
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64{
65 delete fCrossSectionCalculator;
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
70 const G4DataVector& dv)
71{
73 if(fParticleChange)
74 {
75 return;
76 }
77 fParticleChange = GetParticleChangeForGamma();
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
82 G4double kinEnergy)
83{
84 // cross section from base model
86
87 G4double polzz = fBeamPolarization.z() * fTargetPolarization.z();
88 G4double poltt = fBeamPolarization.x() * fTargetPolarization.x() +
89 fBeamPolarization.y() * fTargetPolarization.y();
90 if(polzz != 0 || poltt != 0)
91 {
92 G4double xval, lasym, tasym;
93 ComputeAsymmetriesPerElectron(kinEnergy, xval, lasym, tasym);
94 xs *= (1. + polzz * lasym + poltt * tasym);
95 }
96
97 return xs;
98}
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
102 G4double ene, G4double& valueX, G4double& valueA, G4double& valueT)
103{
104 // *** calculate asymmetries
105 G4double gam = 1. + ene / electron_mass_c2;
106 G4double xs0 = fCrossSectionCalculator->TotalXSection(
108 G4double xsA = fCrossSectionCalculator->TotalXSection(
110 G4double xsT1 = fCrossSectionCalculator->TotalXSection(
112 G4double xsT2 = fCrossSectionCalculator->TotalXSection(
114 G4double xsT = 0.5 * (xsT1 + xsT2);
115
116 valueX = xs0;
117 valueA = xsA / xs0 - 1.;
118 valueT = xsT / xs0 - 1.;
119
120 if((valueA < -1) || (1 < valueA))
121 {
123 ed << " ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
124 ed << " something wrong in total cross section calculation (valueA)\n";
125 ed << " LONG: " << valueX << "\t" << valueA << "\t" << valueT
126 << " energy = " << gam << G4endl;
127 G4Exception("G4PolarizedAnnihilationModel::ComputeAsymmetriesPerElectron",
128 "pol004", JustWarning, ed);
129 }
130 if((valueT < -1) || (1 < valueT))
131 {
133 ed << " ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
134 ed << " something wrong in total cross section calculation (valueT)\n";
135 ed << " TRAN: " << valueX << "\t" << valueA << "\t" << valueT
136 << " energy = " << gam << G4endl;
137 G4Exception("G4PolarizedAnnihilationModel::ComputeAsymmetriesPerElectron",
138 "pol005", JustWarning, ed);
139 }
140}
141
143 std::vector<G4DynamicParticle*>* fvect, const G4MaterialCutsCouple*,
145{
146 const G4Track* aTrack = fParticleChange->GetCurrentTrack();
147
148 // kill primary
149 fParticleChange->SetProposedKineticEnergy(0.);
150 fParticleChange->ProposeTrackStatus(fStopAndKill);
151
152 // V.Ivanchenko add protection against zero kin energy
153 G4double PositKinEnergy = dp->GetKineticEnergy();
154
155 if(PositKinEnergy == 0.0)
156 {
157 G4double cosTeta = 2. * G4UniformRand() - 1.;
158 G4double sinTeta = std::sqrt((1.0 - cosTeta) * (1.0 + cosTeta));
159 G4double phi = twopi * G4UniformRand();
160 G4ThreeVector dir(sinTeta * std::cos(phi), sinTeta * std::sin(phi),
161 cosTeta);
162 fvect->push_back(
163 new G4DynamicParticle(G4Gamma::Gamma(), dir, electron_mass_c2));
164 fvect->push_back(
165 new G4DynamicParticle(G4Gamma::Gamma(), -dir, electron_mass_c2));
166 return;
167 }
168
169 // *** obtain and save target and beam polarization ***
170 G4PolarizationManager* polarizationManager =
172
173 // obtain polarization of the beam
174 fBeamPolarization = G4StokesVector(aTrack->GetPolarization());
175
176 // obtain polarization of the media
177 G4VPhysicalVolume* aPVolume = aTrack->GetVolume();
178 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume();
179 const G4bool targetIsPolarized = polarizationManager->IsPolarized(aLVolume);
180 fTargetPolarization = polarizationManager->GetVolumePolarization(aLVolume);
181
182 if(fVerboseLevel >= 1)
183 {
184 G4cout << "G4PolarizedComptonModel::SampleSecondaries in "
185 << aLVolume->GetName() << G4endl;
186 }
187
188 // transfer target electron polarization in frame of positron
189 if(targetIsPolarized)
190 fTargetPolarization.rotateUz(dp->GetMomentumDirection());
191
192 G4ParticleMomentum PositDirection = dp->GetMomentumDirection();
193
194 // polar asymmetry:
195 G4double polarization = fBeamPolarization.p3() * fTargetPolarization.p3();
196
197 G4double gamam1 = PositKinEnergy / electron_mass_c2;
198 G4double gama = gamam1 + 1., gamap1 = gamam1 + 2.;
199 G4double sqgrate = std::sqrt(gamam1 / gamap1) / 2.,
200 sqg2m1 = std::sqrt(gamam1 * gamap1);
201
202 // limits of the energy sampling
203 G4double epsilmin = 0.5 - sqgrate, epsilmax = 0.5 + sqgrate;
204 G4double epsilqot = epsilmax / epsilmin;
205
206 // sample the energy rate of the created gammas
207 // note: for polarized partices, the actual dicing strategy
208 // will depend on the energy, and the degree of polarization !!
209 G4double epsil;
210 G4double gmax = 1. + std::fabs(polarization); // crude estimate
211
212 fCrossSectionCalculator->Initialize(epsilmin, gama, 0., fBeamPolarization,
213 fTargetPolarization);
214 if(fCrossSectionCalculator->DiceEpsilon() < 0.)
215 {
217 ed << "ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
218 << "epsilmin DiceRoutine not appropriate ! "
219 << fCrossSectionCalculator->DiceEpsilon() << G4endl;
220 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol006",
221 JustWarning, ed);
222 }
223
224 fCrossSectionCalculator->Initialize(epsilmax, gama, 0., fBeamPolarization,
225 fTargetPolarization);
226 if(fCrossSectionCalculator->DiceEpsilon() < 0)
227 {
229 ed << "ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
230 << "epsilmax DiceRoutine not appropriate ! "
231 << fCrossSectionCalculator->DiceEpsilon() << G4endl;
232 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol007",
233 JustWarning, ed);
234 }
235
236 G4int ncount = 0;
237 G4double trejectmax = 0.;
238 G4double treject;
239
240 do
241 {
242 epsil = epsilmin * std::pow(epsilqot, G4UniformRand());
243
244 fCrossSectionCalculator->Initialize(epsil, gama, 0., fBeamPolarization,
245 fTargetPolarization, 1);
246
247 treject = fCrossSectionCalculator->DiceEpsilon();
248 treject *= epsil;
249
250 if(treject > gmax || treject < 0.)
251 {
253 ed << "ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
254 << " eps (" << epsil
255 << ") rejection does not work properly: " << treject << G4endl;
256 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol008",
257 JustWarning, ed);
258 }
259 ++ncount;
260 if(treject > trejectmax)
261 trejectmax = treject;
262 if(ncount > 1000)
263 {
265 ed << "WARNING in PolarizedAnnihilationPS::PostStepDoIt\n"
266 << "eps dicing very inefficient =" << trejectmax / gmax << ", "
267 << treject / gmax << ". For secondary energy = " << epsil << " "
268 << ncount << G4endl;
269 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol009",
270 JustWarning, ed);
271 break;
272 }
273
274 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
275 } while(treject < gmax * G4UniformRand());
276
277 // scattered Gamma angles. ( Z - axis along the parent positron)
278 G4double cost = (epsil * gamap1 - 1.) / (epsil * sqg2m1);
279 G4double sint = std::sqrt((1. + cost) * (1. - cost));
280 G4double phi = 0.;
281 G4double beamTrans =
282 std::sqrt(sqr(fBeamPolarization.p1()) + sqr(fBeamPolarization.p2()));
283 G4double targetTrans =
284 std::sqrt(sqr(fTargetPolarization.p1()) + sqr(fTargetPolarization.p2()));
285
286 do
287 {
288 phi = twopi * G4UniformRand();
289 fCrossSectionCalculator->Initialize(epsil, gama, 0., fBeamPolarization,
290 fTargetPolarization, 2);
291
292 G4double gdiced = fCrossSectionCalculator->getVar(0);
293 gdiced += fCrossSectionCalculator->getVar(3) * fBeamPolarization.p3() *
294 fTargetPolarization.p3();
295 gdiced += 1. *
296 (std::fabs(fCrossSectionCalculator->getVar(1)) +
297 std::fabs(fCrossSectionCalculator->getVar(2))) *
298 beamTrans * targetTrans;
299 gdiced += 1. * std::fabs(fCrossSectionCalculator->getVar(4)) *
300 (std::fabs(fBeamPolarization.p3()) * targetTrans +
301 std::fabs(fTargetPolarization.p3()) * beamTrans);
302
303 G4double gdist = fCrossSectionCalculator->getVar(0);
304 gdist += fCrossSectionCalculator->getVar(3) * fBeamPolarization.p3() *
305 fTargetPolarization.p3();
306 gdist += fCrossSectionCalculator->getVar(1) *
307 (std::cos(phi) * fBeamPolarization.p1() +
308 std::sin(phi) * fBeamPolarization.p2()) *
309 (std::cos(phi) * fTargetPolarization.p1() +
310 std::sin(phi) * fTargetPolarization.p2());
311 gdist += fCrossSectionCalculator->getVar(2) *
312 (std::cos(phi) * fBeamPolarization.p2() -
313 std::sin(phi) * fBeamPolarization.p1()) *
314 (std::cos(phi) * fTargetPolarization.p2() -
315 std::sin(phi) * fTargetPolarization.p1());
316 gdist +=
317 fCrossSectionCalculator->getVar(4) *
318 (std::cos(phi) * fBeamPolarization.p3() * fTargetPolarization.p1() +
319 std::cos(phi) * fBeamPolarization.p1() * fTargetPolarization.p3() +
320 std::sin(phi) * fBeamPolarization.p3() * fTargetPolarization.p2() +
321 std::sin(phi) * fBeamPolarization.p2() * fTargetPolarization.p3());
322
323 treject = gdist / gdiced;
324 if(treject > 1. + 1.e-10 || treject < 0)
325 {
327 ed << "!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
328 << " phi rejection does not work properly: " << treject << G4endl;
329 G4cout << " gdiced = " << gdiced << G4endl;
330 G4cout << " gdist = " << gdist << G4endl;
331 G4cout << " epsil = " << epsil << G4endl;
332 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol009",
333 JustWarning, ed);
334 }
335
336 if(treject < 1.e-3)
337 {
339 ed << "!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
340 << " phi rejection does not work properly: " << treject << "\n";
341 G4cout << " gdiced=" << gdiced << " gdist=" << gdist << "\n";
342 G4cout << " epsil = " << epsil << G4endl;
343 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol010",
344 JustWarning, ed);
345 }
346
347 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
348 } while(treject < G4UniformRand());
349
350 G4double dirx = sint * std::cos(phi);
351 G4double diry = sint * std::sin(phi);
352 G4double dirz = cost;
353
354 // kinematic of the created pair
355 G4double TotalAvailableEnergy = PositKinEnergy + 2 * electron_mass_c2;
356 G4double Phot1Energy = epsil * TotalAvailableEnergy;
357 G4double Phot2Energy = (1. - epsil) * TotalAvailableEnergy;
358
359 // *** prepare calculation of polarization transfer ***
360 G4ThreeVector Phot1Direction(dirx, diry, dirz);
361
362 // get interaction frame
363 G4ThreeVector nInteractionFrame =
364 G4PolarizationHelper::GetFrame(PositDirection, Phot1Direction);
365
366 // define proper in-plane and out-of-plane component of initial spins
367 fBeamPolarization.InvRotateAz(nInteractionFrame, PositDirection);
368 fTargetPolarization.InvRotateAz(nInteractionFrame, PositDirection);
369
370 // calculate spin transfere matrix
371
372 fCrossSectionCalculator->Initialize(epsil, gama, phi, fBeamPolarization,
373 fTargetPolarization, 2);
374
375 Phot1Direction.rotateUz(PositDirection);
376 // create G4DynamicParticle object for the particle1
377 G4DynamicParticle* aParticle1 =
378 new G4DynamicParticle(G4Gamma::Gamma(), Phot1Direction, Phot1Energy);
379 fFinalGamma1Polarization = fCrossSectionCalculator->GetPol2();
380 G4double n1 = fFinalGamma1Polarization.mag2();
381 if(n1 > 1.)
382 {
384 ed << "ERROR: PolarizedAnnihilation Polarization Vector at epsil = "
385 << epsil << " is too large!!! \n"
386 << "annihi pol1= " << fFinalGamma1Polarization << ", (" << n1 << ")\n";
387 fFinalGamma1Polarization *= 1. / std::sqrt(n1);
388 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol011",
389 JustWarning, ed);
390 }
391
392 // define polarization of first final state photon
393 fFinalGamma1Polarization.SetPhoton();
394 fFinalGamma1Polarization.RotateAz(nInteractionFrame, Phot1Direction);
395 aParticle1->SetPolarization(fFinalGamma1Polarization.p1(),
396 fFinalGamma1Polarization.p2(),
397 fFinalGamma1Polarization.p3());
398
399 fvect->push_back(aParticle1);
400
401 // **********************************************************************
402
403 G4double Eratio = Phot1Energy / Phot2Energy;
404 G4double PositP =
405 std::sqrt(PositKinEnergy * (PositKinEnergy + 2. * electron_mass_c2));
406 G4ThreeVector Phot2Direction(-dirx * Eratio, -diry * Eratio,
407 (PositP - dirz * Phot1Energy) / Phot2Energy);
408 Phot2Direction.rotateUz(PositDirection);
409 // create G4DynamicParticle object for the particle2
410 G4DynamicParticle* aParticle2 =
411 new G4DynamicParticle(G4Gamma::Gamma(), Phot2Direction, Phot2Energy);
412
413 // define polarization of second final state photon
414 fFinalGamma2Polarization = fCrossSectionCalculator->GetPol3();
415 G4double n2 = fFinalGamma2Polarization.mag2();
416 if(n2 > 1.)
417 {
419 ed << "ERROR: PolarizedAnnihilation Polarization Vector at epsil = "
420 << epsil << " is too large!!! \n";
421 ed << "annihi pol2= " << fFinalGamma2Polarization << ", (" << n2 << ")\n";
422
423 G4Exception("G4PolarizedAnnihilationModel::SampleSecondaries", "pol012",
424 JustWarning, ed);
425 fFinalGamma2Polarization *= 1. / std::sqrt(n2);
426 }
427 fFinalGamma2Polarization.SetPhoton();
428 fFinalGamma2Polarization.RotateAz(nInteractionFrame, Phot2Direction);
429 aParticle2->SetPolarization(fFinalGamma2Polarization.p1(),
430 fFinalGamma2Polarization.p2(),
431 fFinalGamma2Polarization.p3());
432
433 fvect->push_back(aParticle2);
434}
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
double x() const
double mag2() const
double y() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
const G4String & GetName() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4ThreeVector GetFrame(const G4ThreeVector &, const G4ThreeVector &)
bool IsPolarized(G4LogicalVolume *lVol) const
const G4StokesVector GetVolumePolarization(G4LogicalVolume *lVol) const
static G4PolarizationManager * GetInstance()
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual G4double ComputeCrossSectionPerElectron(G4double kinEnergy) override
void ComputeAsymmetriesPerElectron(G4double gammaEnergy, G4double &valueX, G4double &valueA, G4double &valueT)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) final
G4PolarizedAnnihilationModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="Polarized-Annihilation")
virtual G4double TotalXSection(G4double xmin, G4double xmax, G4double y, const G4StokesVector &pol0, const G4StokesVector &pol1) override
virtual void Initialize(G4double eps, G4double gamma, G4double phi, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0) override
virtual G4StokesVector GetPol3() override
virtual G4StokesVector GetPol2() override
G4double p3() const
static const G4StokesVector P3
G4double p1() const
static const G4StokesVector ZERO
void InvRotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
static const G4StokesVector P2
G4double p2() const
void RotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
static const G4StokesVector P1
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPolarization() const
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
void ProposeTrackStatus(G4TrackStatus status)
const G4Track * GetCurrentTrack() const
G4LogicalVolume * GetLogicalVolume() const
virtual G4double ComputeCrossSectionPerElectron(G4double kinEnergy)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
T sqr(const T &x)
Definition: templates.hh:128