Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4IonCoulombScatteringModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4IonCoulombScatteringModel.cc
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31// File name: G4IonCoulombScatteringModel
32//
33// Author: Cristina Consolandi
34//
35// Creation date: 05.10.2010 from G4eCoulombScatteringModel
36// & G4CoulombScatteringModel
37//
38// Class Description:
39// Single Scattering Model for
40// for protons, alpha and heavy Ions
41//
42// Reference:
43// M.J. Boschini et al. "Nuclear and Non-Ionizing Energy-Loss
44// for Coulomb ScatteredParticles from Low Energy up to Relativistic
45// Regime in Space Radiation Environment"
46// Accepted for publication in the Proceedings of the ICATPP Conference
47// on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo, 7-8
48// October, 2010, to be published by World Scientific (Singapore).
49//
50// Available for downloading at:
51// http://arxiv.org/abs/1011.4822
52//
53// -------------------------------------------------------------------
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
56
57
60#include "G4SystemOfUnits.hh"
61#include "Randomize.hh"
63#include "G4Proton.hh"
65#include "G4NucleiProperties.hh"
66#include "G4ParticleTable.hh"
67#include "G4IonTable.hh"
68
69#include "G4UnitsTable.hh"
70
71//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
72
73using namespace std;
74
76 : G4VEmModel(nam),
77 cosThetaMin(1.0)
78{
79 fNistManager = G4NistManager::Instance();
81 theProton = G4Proton::Proton();
82
83 pCuts = nullptr;
84 currentMaterial = nullptr;
85 currentElement = nullptr;
86 currentCouple = nullptr;
87 fParticleChange = nullptr;
88
89 recoilThreshold = 0.*eV;
90 heavycorr =0;
91 particle = nullptr;
92 mass=0;
93 currentMaterialIndex = -1;
94
95 ioncross = new G4IonCoulombCrossSection();
96}
97
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100
102{
103 delete ioncross;
104}
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107
109 const G4DataVector& cuts)
110{
111 SetupParticle(p);
112 currentCouple = nullptr;
113 currentMaterialIndex = -1;
114 ioncross->Initialise(p,cosThetaMin);
115
116 pCuts = &cuts;
117 // G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3);
118 if(!fParticleChange) {
119 fParticleChange = GetParticleChangeForGamma();
120 }
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124
126 const G4ParticleDefinition* p,
127 G4double kinEnergy,
128 G4double Z,
130{
131 SetupParticle(p);
132
133 G4double cross = 0.0;
134
135 DefineMaterial(CurrentCouple());
136
137 G4int iz = G4lrint(Z);
138
139 //from lab to pCM & mu_rel of effective particle
140 G4double tmass = proton_mass_c2;
141 if(1 < iz) {
142 tmass = fNistManager->GetAtomicMassAmu(iz)*amu_c2;
143 }
144 ioncross->SetupKinematic(kinEnergy, tmass);
145 ioncross->SetupTarget(Z, kinEnergy, heavycorr);
146 cross = ioncross->NuclearCrossSection();
147 return cross;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151
153 std::vector<G4DynamicParticle*>* fvect,
154 const G4MaterialCutsCouple* couple,
155 const G4DynamicParticle* dp,
157{
158 G4double kinEnergy = dp->GetKineticEnergy();
159 DefineMaterial(couple);
160 SetupParticle(dp->GetDefinition());
161
162 // Choose nucleus
163 currentElement = SelectTargetAtom(couple, particle, kinEnergy,
164 dp->GetLogKineticEnergy());
165
166 G4int iz = currentElement->GetZasInt();
167 G4int ia = SelectIsotopeNumber(currentElement);
169
170 ioncross->SetupKinematic(kinEnergy, mass2);
171 ioncross->SetupTarget(currentElement->GetZ(), kinEnergy, heavycorr);
172
173 //scattering angle, z1 == (1-cost)
174 G4double z1 = ioncross->SampleCosineTheta();
175 if(z1 > 2.0) { z1 = 2.0; }
176 else if(z1 < 0.0) { z1 = 0.0; }
177 /*
178 G4cout << "Sample: " << particle->GetParticleName()
179 << " mass(GeV)= " << mass/GeV
180 << " Ekin(MeV)= " << kinEnergy << " cost= " << 1. - z1 << G4endl;
181 G4cout << " Z= " << iz << " A= " << ia
182 << " mass(GeV)= " << mass2/GeV << G4endl;
183 */
184 G4double cost = 1.0 - z1;
185 G4double sint = sqrt(z1*(1.0 + cost));
186 G4double phi = twopi * G4UniformRand();
187
188 // kinematics in the Lab system
189 G4double ptot = sqrt(kinEnergy*(kinEnergy + 2.0*mass));
190 G4double e1 = mass + kinEnergy;
191
192 // Lab. system kinematics along projectile direction
193 G4LorentzVector v0 = G4LorentzVector(0, 0, ptot, e1+mass2);
194 G4LorentzVector v1 = G4LorentzVector(0, 0, ptot, e1);
195 G4ThreeVector bst = v0.boostVector();
196 v1.boost(-bst);
197 // CM projectile
198 G4double momCM = v1.pz();
199
200 // Momentum after scattering of incident particle
201 v1.setX(momCM*sint*cos(phi));
202 v1.setY(momCM*sint*sin(phi));
203 v1.setZ(momCM*cost);
204
205 // CM--->Lab
206 v1.boost(bst);
207
208 // Rotate to global system
210 G4ThreeVector newDirection = v1.vect().unit();
211 newDirection.rotateUz(dir);
212
213 fParticleChange->ProposeMomentumDirection(newDirection);
214
215 // recoil v0 energy is kinetic
216 v0 -= v1;
217 G4double trec = std::max(v0.e() - mass2, 0.0);
218 G4double edep = 0.0;
219
220 G4double tcut = recoilThreshold;
221 if(pCuts) {
222 tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]);
223 //G4cout<<" tcut eV "<<tcut/eV<<endl;
224 }
225
226 // Recoil
227 if(trec > tcut) {
228 G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0);
229 newDirection = v0.vect().unit();
230 newDirection.rotateUz(dir);
231 auto newdp = new G4DynamicParticle(ion, newDirection, trec);
232 fvect->push_back(newdp);
233 } else if(trec > 0.0) {
234 edep = trec;
235 fParticleChange->ProposeNonIonizingEnergyDeposit(edep);
236 }
237
238 // finelize primary energy and energy balance
239 G4double finalT = v1.e() - mass;
240 if(finalT < 0.0) {
241 edep += finalT;
242 finalT = 0.0;
243 }
244 edep = std::max(edep, 0.0);
245 //G4cout << "Efinal(MeV)= " << finalT << " Edep(MeV)= " << edep
246 // << " Trec(MeV)= " << trec << G4endl;
247 fParticleChange->SetProposedKineticEnergy(finalT);
248 fParticleChange->ProposeLocalEnergyDeposit(edep);
249}
250
251//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
252
CLHEP::HepLorentzVector G4LorentzVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetLogKineticEnergy() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
G4int GetZasInt() const
Definition: G4Element.hh:132
void Initialise(const G4ParticleDefinition *, G4double cosThetaLim)
void SetupTarget(G4double Z, G4double kinEnergy, G4int heavycorr)
void SetupKinematic(G4double kinEnergy, G4double tmass)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) final
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax) final
G4IonCoulombScatteringModel(const G4String &nam="IonCoulombScattering")
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) final
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
static G4double GetNuclearMass(const G4double A, const G4double Z)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4Proton * Proton()
Definition: G4Proton.cc:92
G4int SelectIsotopeNumber(const G4Element *) const
Definition: G4VEmModel.cc:276
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:486
const G4Element * SelectTargetAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:577
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition: templates.hh:134