Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCL::RecombinationChannel Class Reference

#include <G4INCLRecombinationChannel.hh>

+ Inheritance diagram for G4INCL::RecombinationChannel:

Public Member Functions

 RecombinationChannel (Particle *p1, Particle *p2)
 
virtual ~RecombinationChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 
virtual void fillFinalState (FinalState *fs)=0
 

Detailed Description

Definition at line 55 of file G4INCLRecombinationChannel.hh.

Constructor & Destructor Documentation

◆ RecombinationChannel()

G4INCL::RecombinationChannel::RecombinationChannel ( Particle p1,
Particle p2 
)

Definition at line 56 of file G4INCLRecombinationChannel.cc.

57 {
58 if(p1->isDelta()) {
59// assert(p2->isNucleon());
60 theDelta = p1;
61 theNucleon = p2;
62 } else {
63// assert(p1->isNucleon());
64 theDelta = p2;
65 theNucleon = p1;
66 }
67 }

◆ ~RecombinationChannel()

G4INCL::RecombinationChannel::~RecombinationChannel ( )
virtual

Definition at line 69 of file G4INCLRecombinationChannel.cc.

70 {
71 }

Member Function Documentation

◆ fillFinalState()

void G4INCL::RecombinationChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 73 of file G4INCLRecombinationChannel.cc.

74 {
75 // Compute the total available energy in the CM
76 const G4double sqrts = KinematicsUtils::totalEnergyInCM(theDelta, theNucleon);
77
78 // Assign the types of the final-state particles
79 switch(theDelta->getType()) {
80 case DeltaPlusPlus:
81// assert(theNucleon->getType()!=Proton);
82 theDelta->setType(Proton);
83 theNucleon->setType(Proton);
84 break;
85 case DeltaPlus:
86 theDelta->setType(Proton);
87 break;
88 case DeltaZero:
89 theDelta->setType(Neutron);
90 break;
91 case DeltaMinus:
92// assert(theNucleon->getType()!=Neutron);
93 theDelta->setType(Neutron);
94 theNucleon->setType(Neutron);
95 break;
96 default:
97 INCL_ERROR("Unknown particle type in RecombinationChannel" << '\n');
98 break;
99 }
100
101 // Calculate the momenta of the nucleons in the final state
102 const G4double pCM = KinematicsUtils::momentumInCM(sqrts, theDelta->getMass(), theNucleon->getMass());
103
104 // The angular distribution of final-state nucleons is isotropic
105 ThreeVector momentum = Random::normVector(pCM);
106
107 // Assign the momenta
108 theDelta->setMomentum(momentum);
109 theNucleon->setMomentum(-momentum);
110
111 // Update the kinetic energies
112 theDelta->adjustEnergyFromMomentum();
113 theNucleon->adjustEnergyFromMomentum();
114
115 // Create the final state
116 fs->addModifiedParticle(theDelta);
117 fs->addModifiedParticle(theNucleon);
118
119 }
#define INCL_ERROR(x)
double G4double
Definition: G4Types.hh:83
G4double adjustEnergyFromMomentum()
Recompute the energy to match the momentum.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double getMass() const
Get the cached particle mass.
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
ThreeVector normVector(G4double norm=1.)

The documentation for this class was generated from the following files: