Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCL::NNToNLK2piChannel Class Reference

#include <G4INCLNNToNLK2piChannel.hh>

+ Inheritance diagram for G4INCL::NNToNLK2piChannel:

Public Member Functions

 NNToNLK2piChannel (Particle *, Particle *)
 
virtual ~NNToNLK2piChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 
virtual void fillFinalState (FinalState *fs)=0
 

Detailed Description

Definition at line 47 of file G4INCLNNToNLK2piChannel.hh.

Constructor & Destructor Documentation

◆ NNToNLK2piChannel()

G4INCL::NNToNLK2piChannel::NNToNLK2piChannel ( Particle p1,
Particle p2 
)

Definition at line 51 of file G4INCLNNToNLK2piChannel.cc.

52 : particle1(p1), particle2(p2)
53 {}

◆ ~NNToNLK2piChannel()

G4INCL::NNToNLK2piChannel::~NNToNLK2piChannel ( )
virtual

Definition at line 55 of file G4INCLNNToNLK2piChannel.cc.

55{}

Member Function Documentation

◆ fillFinalState()

void G4INCL::NNToNLK2piChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 57 of file G4INCLNNToNLK2piChannel.cc.

57 {
58
59 /* Equipartition in all channel with factor N(pi)!
60 */
61
62 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
63
64 const G4int iso = ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
65
66 ParticleType KaonType;
67 ParticleType Pion1Type;
68 ParticleType Pion2Type;
69
70 G4double rdm = Random::shoot();
71 particle2->setType(Lambda);
72
73 if(iso == 2){
74 if(rdm*7. < 2.){
75 particle1->setType(Neutron);
76 KaonType = KZero;
77 Pion1Type = PiPlus;
78 Pion2Type = PiPlus;
79 }
80 else if(rdm*7. < 3.){
81 particle1->setType(Neutron);
82 KaonType = KPlus;
83 Pion1Type = PiZero;
84 Pion2Type = PiPlus;
85 }
86 else if(rdm*7. < 4.){
87 particle1->setType(Proton);
88 KaonType = KZero;
89 Pion1Type = PiZero;
90 Pion2Type = PiPlus;
91 }
92 else if(rdm*7. < 5.){
93 particle1->setType(Proton);
94 KaonType = KPlus;
95 Pion1Type = PiMinus;
96 Pion2Type = PiPlus;
97 }
98 else{
99 particle1->setType(Proton);
100 KaonType = KPlus;
101 Pion1Type = PiZero;
102 Pion2Type = PiZero;
103 }
104
105 }if(iso == -2){
106 if(rdm*7. < 1.){
107 particle1->setType(Neutron);
108 KaonType = KZero;
109 Pion1Type = PiMinus;
110 Pion2Type = PiPlus;
111 }
112 else if(rdm*7. < 3.){
113 particle1->setType(Neutron);
114 KaonType = KZero;
115 Pion1Type = PiZero;
116 Pion2Type = PiZero;
117 }
118 else if(rdm*7. < 4.){
119 particle1->setType(Neutron);
120 KaonType = KPlus;
121 Pion1Type = PiMinus;
122 Pion2Type = PiZero;
123 }
124 else if(rdm*7. < 5.){
125 particle1->setType(Proton);
126 KaonType = KZero;
127 Pion1Type = PiMinus;
128 Pion2Type = PiZero;
129 }
130 else{
131 particle1->setType(Proton);
132 KaonType = KPlus;
133 Pion1Type = PiMinus;
134 Pion2Type = PiMinus;
135 }
136 }
137 else{
138 if(rdm*8. < 1.){
139 particle1->setType(Neutron);
140 KaonType = KZero;
141 Pion1Type = PiZero;
142 Pion2Type = PiPlus;
143 }
144 else if(rdm*8. < 2.){
145 particle1->setType(Neutron);
146 KaonType = KPlus;
147 Pion1Type = PiMinus;
148 Pion2Type = PiPlus;
149 }
150 else if(rdm*8. < 4.){
151 particle1->setType(Neutron);
152 KaonType = KPlus;
153 Pion1Type = PiZero;
154 Pion2Type = PiZero;
155 }
156 else if(rdm*8. < 5.){
157 particle1->setType(Proton);
158 KaonType = KZero;
159 Pion1Type = PiMinus;
160 Pion2Type = PiPlus;
161 }
162 else if(rdm*8. < 7.){
163 particle1->setType(Proton);
164 KaonType = KZero;
165 Pion1Type = PiZero;
166 Pion2Type = PiZero;
167 }
168 else{
169 particle1->setType(Proton);
170 KaonType = KPlus;
171 Pion1Type = PiMinus;
172 Pion2Type = PiZero;
173 }
174 }
175
176
177 ParticleList list;
178 list.push_back(particle1);
179 list.push_back(particle2);
180 const ThreeVector &rcol1 = particle1->getPosition();
181 const ThreeVector &rcol2 = particle2->getPosition();
182 const ThreeVector zero;
183 Particle *pion1 = new Particle(Pion1Type,zero,rcol1);
184 Particle *pion2 = new Particle(Pion2Type,zero,rcol1);
185 Particle *kaon = new Particle(KaonType,zero,rcol2);
186 list.push_back(kaon);
187 list.push_back(pion1);
188 list.push_back(pion2);
189
190 if(Random::shoot()<0.5) PhaseSpaceGenerator::generateBiased(sqrtS, list, 0, angularSlope);
191 else PhaseSpaceGenerator::generateBiased(sqrtS, list, 1, angularSlope);
192
193 fs->addModifiedParticle(particle1);
194 fs->addModifiedParticle(particle2);
195 fs->addCreatedParticle(kaon);
196 fs->addCreatedParticle(pion1);
197 fs->addCreatedParticle(pion2);
198
199 }
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4INCL::ThreeVector & getPosition() const
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
G4double shoot()
Definition: G4INCLRandom.cc:93

The documentation for this class was generated from the following files: