Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParticleHPJENDLHEData.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Class Description
27// Cross-section data set for a high precision (based on JENDL_HE evaluated data
28// libraries) description of elastic scattering 20 MeV ~ 3 GeV;
29// Class Description - End
30
31// 15-Nov-06 First Implementation is done by T. Koi (SLAC/SCCS)
32// P. Arce, June-2014 Conversion neutron_hp to particle_hp
33//
35#include "G4SystemOfUnits.hh"
37#include "G4ElementTable.hh"
38#include "G4ParticleHPData.hh"
39#include "G4Pow.hh"
40
42{
43 G4bool result = true;
44 G4double eKin = aP->GetKineticEnergy();
45 //if(eKin>20*MeV||aP->GetDefinition()!=G4Neutron::Neutron()) result = false;
46 if ( eKin < 20*MeV || 3*GeV < eKin || aP->GetDefinition()!=G4Neutron::Neutron() )
47 {
48 result = false;
49 }
50// Element Check
51 else if ( !(vElement[ anE->GetIndex() ]) ) result = false;
52
53 return result;
54}
55
56
58{
59 for ( std::map< G4int , std::map< G4int , G4PhysicsVector* >* >::iterator itZ = mIsotope.begin();
60 itZ != mIsotope.end(); ++itZ ) {
61 std::map< G4int , G4PhysicsVector* >* pointer_map = itZ->second;
62 if ( pointer_map ) {
63 for ( std::map< G4int , G4PhysicsVector* >::iterator itA = pointer_map->begin();
64 itA != pointer_map->end() ; ++itA ) {
65 G4PhysicsVector* pointerPhysicsVector = itA->second;
66 if ( pointerPhysicsVector ) {
67 delete pointerPhysicsVector;
68 itA->second = NULL;
69 }
70 }
71 delete pointer_map;
72 itZ->second = NULL;
73 }
74 }
75 mIsotope.clear();
76}
77
78
80 : G4VCrossSectionDataSet( "JENDLHE"+reaction+"CrossSection" )
81{
82 reactionName = reaction;
83 BuildPhysicsTable( *pd );
84}
85
86
88{
89}
90
91
93{
94 particleName = aP.GetParticleName();
95
96 G4String baseName = G4FindDataDir( "G4NEUTRONHPDATA" );
97 G4String dirName = baseName+"/JENDL_HE/"+particleName+"/"+reactionName ;
98 G4String aFSType = "/CrossSection/";
99 G4ParticleHPNames theNames;
100
101 G4String filename;
102
103 // Create JENDL_HE data
104 // Create map element or isotope
105
106 std::size_t numberOfElements = G4Element::GetNumberOfElements();
107
108 // make a PhysicsVector for each element
109
110 static G4ThreadLocal G4ElementTable *theElementTable = 0 ; if (!theElementTable) theElementTable= G4Element::GetElementTable();
111 vElement.clear();
112 vElement.resize( numberOfElements );
113 for ( std::size_t i = 0; i < numberOfElements; ++i )
114 {
115 G4Element* theElement = (*theElementTable)[i];
116 vElement[i] = false;
117
118 // isotope
119 G4int nIso = (G4int)(*theElementTable)[i]->GetNumberOfIsotopes();
120 G4int Z = (G4int)(*theElementTable)[i]->GetZ();
121 if ( nIso!=0 )
122 {
123 G4bool found_at_least_one = false;
124 for ( G4int i1 = 0; i1 < nIso; ++i1 )
125 {
126 G4int A = theElement->GetIsotope(i1)->GetN();
127
128 if ( isThisNewIsotope( Z , A ) )
129 {
130 std::stringstream ss;
131 ss << dirName << aFSType << Z << "_" << A << "_" << theNames.GetName( Z-1 );
132 filename = ss.str();
133 std::fstream file;
134 file.open ( filename , std::fstream::in );
135 G4int dummy;
136 file >> dummy;
137 if ( file.good() )
138 {
139 found_at_least_one = true;
140
141 // read the file
142 G4PhysicsVector* aPhysVec = readAFile ( &file );
143 registAPhysicsVector( Z , A , aPhysVec );
144 }
145 else
146 {
147 //G4cout << "No file for "<< reactionType << " Z=" << Z << ", A=" << A << G4endl;
148 }
149 file.close();
150 }
151 else
152 {
153 found_at_least_one = TRUE;
154 }
155 }
156 if ( found_at_least_one ) vElement[i] = true;
157 }
158 else
159 {
160 G4StableIsotopes theStableOnes;
161 G4int first = theStableOnes.GetFirstIsotope( Z );
162 G4bool found_at_least_one = FALSE;
163 for ( G4int i1 = 0; i1 < theStableOnes.GetNumberOfIsotopes( static_cast<G4int>(theElement->GetZ() ) ); i1++)
164 {
165 G4int A = theStableOnes.GetIsotopeNucleonCount( first+i1 );
166 if ( isThisNewIsotope( Z , A ) )
167 {
168
169 std::stringstream ss;
170 ss << dirName << aFSType << Z << "_" << A << "_" << theNames.GetName( Z-1 );
171 filename = ss.str();
172
173 std::fstream file;
174 file.open ( filename , std::fstream::in );
175 G4int dummy;
176 file >> dummy;
177 if ( file.good() )
178 {
179 //G4cout << "Found file for Z=" << Z << ", A=" << A << ", as " << filename << G4endl;
180 found_at_least_one = TRUE;
181 //Read the file
182
183 G4PhysicsVector* aPhysVec = readAFile ( &file );
184
185 //Regist the PhysicsVector
186 registAPhysicsVector( Z , A , aPhysVec );
187 }
188 else
189 {
190 //G4cout << "No file for "<< reactionType << " Z=" << Z << ", A=" << A << G4endl;
191 }
192 file.close();
193 }
194 else
195 {
196 found_at_least_one = TRUE;
197 }
198 }
199
200 if ( found_at_least_one ) vElement[i] = true;
201 }
202 }
203}
204
205
207{
208 if(&aP!=G4Neutron::Neutron())
209 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
210}
211
212
215{
216 // Primary energy >20MeV
217 // Thus not taking into account of Doppler broadening
218 // also not taking into account of Target thermal motions
219
220 G4double result = 0;
221
222 G4double ek = aP->GetKineticEnergy();
223
224 G4int nIso = (G4int)anE->GetNumberOfIsotopes();
225 G4int Z = (G4int)anE->GetZ();
226 if ( nIso!=0 )
227 {
228 for ( G4int i1 = 0; i1 < nIso; ++i1 )
229 {
230 G4int A = anE->GetIsotope(i1)->GetN();
231 G4double frac = anE->GetRelativeAbundanceVector()[ i1 ]; // This case does NOT request "*perCent".
232 result += frac * getXSfromThisIsotope( Z , A , ek );
233 }
234 }
235 else
236 {
237 G4StableIsotopes theStableOnes;
238 G4int first = theStableOnes.GetFirstIsotope( Z );
239 for ( G4int i1 = 0; i1 < theStableOnes.GetNumberOfIsotopes( (G4int)anE->GetZ() ); ++i1)
240 {
241 G4int A = theStableOnes.GetIsotopeNucleonCount( first+i1 );
242 G4double frac = theStableOnes.GetAbundance( first+i1 )*perCent; // This case requests "*perCent".
243 result += frac * getXSfromThisIsotope( Z , A , ek );
244 }
245 }
246 return result;
247}
248
249
250G4PhysicsVector* G4ParticleHPJENDLHEData::readAFile ( std::fstream* file )
251{
252 G4int dummy;
253 G4int len;
254 *file >> dummy;
255 *file >> len;
256
257 std::vector< G4double > v_e;
258 std::vector< G4double > v_xs;
259
260 for ( G4int i = 0 ; i < len ; ++i )
261 {
262 G4double e;
263 G4double xs;
264
265 *file >> e;
266 *file >> xs;
267 // data are written in eV and barn.
268 v_e.push_back( e*eV );
269 v_xs.push_back( xs*barn );
270 }
271
272 G4PhysicsFreeVector* aPhysVec = new G4PhysicsFreeVector( static_cast< std::size_t >( len ) , v_e.front() , v_e.back() );
273
274 for ( G4int i = 0 ; i < len ; ++i )
275 {
276 aPhysVec->PutValues( static_cast< std::size_t >( i ) , v_e[ i ] , v_xs[ i ] );
277 }
278
279 return aPhysVec;
280}
281
282
283G4bool G4ParticleHPJENDLHEData::isThisInMap( G4int z , G4int a )
284{
285 if ( mIsotope.find ( z ) == mIsotope.end() ) return false;
286 if ( mIsotope.find ( z ) -> second->find ( a ) == mIsotope.find ( z ) -> second->end() ) return false;
287 return true;
288}
289
290
291void G4ParticleHPJENDLHEData::registAPhysicsVector( G4int Z , G4int A , G4PhysicsVector* aPhysVec )
292{
293 std::pair< G4int , G4PhysicsVector* > aPair = std::pair < G4int , G4PhysicsVector* > ( A , aPhysVec );
294 auto itm = mIsotope.find ( Z );
295 if ( itm != mIsotope.cend() )
296 {
297 itm->second->insert ( aPair );
298 }
299 else
300 {
301 std::map< G4int , G4PhysicsVector* >* aMap = new std::map< G4int , G4PhysicsVector* >;
302 aMap->insert ( aPair );
303 mIsotope.insert( std::pair< G4int , std::map< G4int , G4PhysicsVector* >* > ( Z , aMap ) );
304 }
305}
306
307
308G4double G4ParticleHPJENDLHEData::getXSfromThisIsotope( G4int Z , G4int A , G4double ek )
309{
310 G4double aXSection = 0.0;
311 G4bool outOfRange;
312
313 G4PhysicsVector* aPhysVec;
314 if ( mIsotope.find ( Z )->second->find ( A ) != mIsotope.find ( Z )->second->end() )
315 {
316 aPhysVec = mIsotope.find ( Z )->second->find ( A )->second;
317 aXSection = aPhysVec->GetValue( ek , outOfRange );
318 }
319 else
320 {
321 // Select closest one in the same Z
322 G4int delta0 = 99; // no mean for 99
323 for ( auto it = mIsotope.find ( Z )->second->cbegin();
324 it!= mIsotope.find ( Z )->second->cend(); ++it )
325 {
326 G4int delta = std::abs( A - it->first );
327 if ( delta < delta0 ) delta0 = delta;
328 }
329
330 // Randomize of selection larger or smaller than A
331 if ( G4UniformRand() < 0.5 ) delta0 *= -1;
332 G4int A1 = A + delta0;
333 if ( mIsotope.find ( Z )->second->find ( A1 ) != mIsotope.find ( Z )->second->cend() )
334 {
335 aPhysVec = mIsotope.find ( Z )->second->find ( A1 )->second;
336 }
337 else
338 {
339 A1 = A - delta0;
340 aPhysVec = mIsotope.find ( Z )->second->find ( A1 )->second;
341 }
342
343 aXSection = aPhysVec->GetValue( ek , outOfRange );
344 // X^(2/3) factor
345 aXSection *= G4Pow::GetInstance()->A23( 1.0*A/ A1 );
346 }
347
348 return aXSection;
349}
std::vector< G4Element * > G4ElementTable
const char * G4FindDataDir(const char *)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetKineticEnergy() const
static G4ElementTable * GetElementTable()
Definition: G4Element.cc:403
G4double * GetRelativeAbundanceVector() const
Definition: G4Element.hh:167
G4double GetZ() const
Definition: G4Element.hh:131
static size_t GetNumberOfElements()
Definition: G4Element.cc:410
const G4Isotope * GetIsotope(G4int iso) const
Definition: G4Element.hh:170
size_t GetIndex() const
Definition: G4Element.hh:182
size_t GetNumberOfIsotopes() const
Definition: G4Element.hh:159
G4int GetN() const
Definition: G4Isotope.hh:93
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
const G4String & GetParticleName() const
G4double GetCrossSection(const G4DynamicParticle *, const G4Element *, G4double aT)
G4bool IsApplicable(const G4DynamicParticle *, const G4Element *)
void BuildPhysicsTable(const G4ParticleDefinition &)
void DumpPhysicsTable(const G4ParticleDefinition &)
G4ParticleHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
void PutValues(const std::size_t index, const G4double energy, const G4double value)
G4double GetValue(const G4double energy, G4bool &isOutRange) const
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A23(G4double A) const
Definition: G4Pow.hh:131
G4double GetAbundance(G4int number)
G4int GetFirstIsotope(G4int Z)
G4int GetNumberOfIsotopes(G4int Z)
G4int GetIsotopeNucleonCount(G4int number)
#define TRUE
Definition: globals.hh:41
#define FALSE
Definition: globals.hh:38
#define G4ThreadLocal
Definition: tls.hh:77