Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronPhysicsShielding.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//---------------------------------------------------------------------------
28//
29// ClassName:
30//
31// Author: 2010 Tatsumi Koi, Gunter Folger
32// created from G4HadronPhysicsFTFP_BERT
33//
34// Modified:
35//
36// 2020.05.07 A.Ribon used the newly introduced G4HyperonBuilder
37// 2019.08.01 A.Ribon replaced explicit numbers for the energy transition
38// region with values taken from G4HadronicParameters
39// 2014.08.05 K.L.Genser added provisions for modifing the Bertini to
40// FTF transition energy region
41//
42//----------------------------------------------------------------------------
43//
44#include <iomanip>
45
47
48#include "globals.hh"
49#include "G4ios.hh"
50#include "G4SystemOfUnits.hh"
52#include "G4ParticleTable.hh"
53
54#include "G4MesonConstructor.hh"
57#include "G4IonConstructor.hh"
58
59#include "G4PionBuilder.hh"
61#include "G4FTFPPionBuilder.hh"
62
63#include "G4KaonBuilder.hh"
65#include "G4FTFPKaonBuilder.hh"
66
67#include "G4ProtonBuilder.hh"
71
72#include "G4NeutronBuilder.hh"
76
77#include "G4HyperonBuilder.hh"
81
86
89#include "G4PhysListUtil.hh"
90
94#include "G4NeutronCaptureXS.hh"
96#include "G4LFission.hh"
97
99#include "G4PhysListUtil.hh"
101#include "G4ProcessManager.hh"
102
103// factory
105//
107
108
114
118
120 : G4HadronPhysicsFTFP_BERT(name, qe), useLEND_(false), evaluation_("")
121{
122 minBERT_neutron = 19.9*CLHEP::MeV;
123}
124
130
132 G4double minFTFPEnergy, G4double maxBertiniEnergy)
133 : G4HadronPhysicsShielding(name, false)
134{
136 minFTFP_pion = minFTFPEnergy;
137 maxBERT_pion = maxBertiniEnergy;
138 minFTFP_kaon = minFTFPEnergy;
139 maxBERT_kaon = maxBertiniEnergy;
140 minFTFP_proton = minFTFPEnergy;
141 maxBERT_proton = maxBertiniEnergy;
142 minFTFP_neutron = minFTFPEnergy;
143 maxBERT_neutron = maxBertiniEnergy;
144}
145
148
150{
152 G4bool useFactorXS = param->ApplyFactorXS();
153
154 auto neu = new G4NeutronBuilder( true ); // Fission on
155 AddBuilder(neu);
156 auto ftfpneu = new G4FTFPNeutronBuilder(QuasiElastic);
157 AddBuilder(ftfpneu);
158 ftfpneu->SetMinEnergy(minFTFP_neutron);
159 neu->RegisterMe(ftfpneu);
160 auto bertneu = new G4BertiniNeutronBuilder;
161 AddBuilder(bertneu);
162 bertneu->SetMaxEnergy(maxBERT_neutron);
163 bertneu->SetMinEnergy(minBERT_neutron);
164 neu->RegisterMe(bertneu);
165 if(useLEND_) {
166 auto hpneu = new G4NeutronLENDBuilder(evaluation_);
167 AddBuilder(hpneu);
168 neu->RegisterMe(hpneu);
169 } else {
170 auto hpneu = new G4NeutronPHPBuilder;
171 AddBuilder(hpneu);
172 neu->RegisterMe(hpneu);
173 }
174 neu->Build();
175
176 const G4ParticleDefinition* neutron = G4Neutron::Neutron();
178 if(inel) {
179 // Register the G4ParticleHPJENDLHEInelasticData as the 2nd priority.
181 if( useFactorXS ) inel->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() );
182 }
183
185 if (capture) {
186 G4NeutronRadCapture* theNeutronRadCapture = new G4NeutronRadCapture();
187 theNeutronRadCapture->SetMinEnergy( minBERT_neutron );
188 capture->RegisterMe( theNeutronRadCapture );
189 }
191 if (fission) {
192 G4LFission* theNeutronLEPFission = new G4LFission();
193 theNeutronLEPFission->SetMinEnergy( minBERT_neutron );
194 theNeutronLEPFission->SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() );
195 fission->RegisterMe( theNeutronLEPFission );
196 }
197}
198
207
208
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
void AddDataSet(G4VCrossSectionDataSet *)
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
void SetVerboseLevel(const G4int val)
G4double XSFactorNucleonInelastic() const
G4CrossSectionDataStore * GetCrossSectionDataStore()
void MultiplyCrossSectionBy(G4double factor)
void RegisterMe(G4HadronicInteraction *a)
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
static G4HadronicProcess * FindInelasticProcess(const G4ParticleDefinition *)
static G4HadronicProcess * FindCaptureProcess(const G4ParticleDefinition *)
static G4HadronicProcess * FindFissionProcess(const G4ParticleDefinition *)
void AddBuilder(G4PhysicsBuilderInterface *bld)
G4bool IsMasterThread()