Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NeutronRadCapture Class Reference

#include <G4NeutronRadCapture.hh>

+ Inheritance diagram for G4NeutronRadCapture:

Public Member Functions

 G4NeutronRadCapture ()
 
virtual ~G4NeutronRadCapture ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) final
 
virtual void InitialiseModel () final
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 51 of file G4NeutronRadCapture.hh.

Constructor & Destructor Documentation

◆ G4NeutronRadCapture()

G4NeutronRadCapture::G4NeutronRadCapture ( )
explicit

Definition at line 56 of file G4NeutronRadCapture.cc.

57 : G4HadronicInteraction("nRadCapture"),
58 photonEvaporation(nullptr),lab4mom(0.,0.,0.,0.)
59{
60 lowestEnergyLimit = 10*CLHEP::eV;
61 minExcitation = 0.1*CLHEP::keV;
62 SetMinEnergy( 0.0*CLHEP::GeV );
64
65 electron = G4Electron::Electron();
66 icID = -1;
67 secID = -1;
69}
static G4Electron * Electron()
Definition G4Electron.cc:91
void SetMinEnergy(G4double anEnergy)
G4HadronicInteraction(const G4String &modelName="HadronicModel")
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()

◆ ~G4NeutronRadCapture()

G4NeutronRadCapture::~G4NeutronRadCapture ( )
virtual

Definition at line 71 of file G4NeutronRadCapture.cc.

72{
73 delete photonEvaporation;
74}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4NeutronRadCapture::ApplyYourself ( const G4HadProjectile & aTrack,
G4Nucleus & targetNucleus )
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 89 of file G4NeutronRadCapture.cc.

91{
94
95 G4int A = theNucleus.GetA_asInt();
96 G4int Z = theNucleus.GetZ_asInt();
97
98 G4double time = aTrack.GetGlobalTime();
99
100 // Create initial state
101 lab4mom.set(0.,0.,0.,G4NucleiProperties::GetNuclearMass(A, Z));
102 lab4mom += aTrack.Get4Momentum();
103
104 G4double M = lab4mom.mag();
105 ++A;
107 //G4cout << "Capture start: Z= " << Z << " A= " << A
108 // << " LabM= " << M << " Mcompound= " << mass << G4endl;
109
110 // simplified method of 1 gamma emission
111 if(A <= 4) {
112
113 G4ThreeVector bst = lab4mom.boostVector();
114
115 if(M - mass <= lowestEnergyLimit) {
116 return &theParticleChange;
117 }
118
119 if (verboseLevel > 1) {
120 G4cout << "G4NeutronRadCapture::DoIt: Eini(MeV)="
121 << aTrack.GetKineticEnergy()/MeV << " Eexc(MeV)= "
122 << (M - mass)/MeV
123 << " Z= " << Z << " A= " << A << G4endl;
124 }
125 G4double e1 = (M - mass)*(M + mass)/(2*M);
127 lv2.boost(bst);
128 G4HadSecondary* news =
130 news->SetTime(time);
131 news->SetCreatorModelID(secID);
133 delete news;
134
135 const G4ParticleDefinition* theDef = 0;
136
137 lab4mom -= lv2;
138 if (Z == 1 && A == 2) {theDef = G4Deuteron::Deuteron();}
139 else if (Z == 1 && A == 3) {theDef = G4Triton::Triton();}
140 else if (Z == 2 && A == 3) {theDef = G4He3::He3();}
141 else if (Z == 2 && A == 4) {theDef = G4Alpha::Alpha();}
142 else { theDef = theTableOfIons->GetIon(Z,A,0.0,noFloat,0); }
143
144 if (verboseLevel > 1) {
145 G4cout << "Gamma 4-mom: " << lv2 << " "
146 << theDef->GetParticleName() << " " << lab4mom << G4endl;
147 }
148 if(theDef) {
149 news = new G4HadSecondary(new G4DynamicParticle(theDef, lab4mom));
150 news->SetTime(time);
151 news->SetCreatorModelID(secID);
153 delete news;
154 }
155
156 // Use photon evaporation
157 } else {
158
159 // protection against wrong kinematic
160 if(M < mass) {
161 G4double etot = std::max(mass, lab4mom.e());
162 G4double ptot = std::sqrt((etot - mass)*(etot + mass));
163 G4ThreeVector v = lab4mom.vect().unit();
164 lab4mom.set(v.x()*ptot,v.y()*ptot,v.z()*ptot,etot);
165 }
166
167 G4Fragment* aFragment = new G4Fragment(A, Z, lab4mom);
168
169 if (verboseLevel > 1) {
170 G4cout << "G4NeutronRadCapture::ApplyYourself initial G4Fragmet:"
171 << G4endl;
172 G4cout << aFragment << G4endl;
173 }
174
175 //
176 // Sample final state
177 //
178 G4FragmentVector* fv = photonEvaporation->BreakUpFragment(aFragment);
179 if(!fv) { fv = new G4FragmentVector(); }
180 fv->push_back(aFragment);
181 size_t n = fv->size();
182
183 if (verboseLevel > 1) {
184 G4cout << "G4NeutronRadCapture: " << n << " final particle icID= " << icID << G4endl;
185 }
186 for(size_t i=0; i<n; ++i) {
187
188 G4Fragment* f = (*fv)[i];
189 G4double etot = f->GetMomentum().e();
190
191 Z = f->GetZ_asInt();
192 A = f->GetA_asInt();
193
194 const G4ParticleDefinition* theDef;
195 if(0 == Z && 0 == A) {theDef = f->GetParticleDefinition();}
196 else if (Z == 1 && A == 2) {theDef = G4Deuteron::Deuteron();}
197 else if (Z == 1 && A == 3) {theDef = G4Triton::Triton();}
198 else if (Z == 2 && A == 3) {theDef = G4He3::He3();}
199 else if (Z == 2 && A == 4) {theDef = G4Alpha::Alpha();}
200 else {
201 G4double eexc = f->GetExcitationEnergy();
202 if(eexc <= minExcitation) { eexc = 0.0; }
203 theDef = theTableOfIons->GetIon(Z, A, eexc, noFloat, 0);
204 /*
205 G4cout << "### NC Find ion Z= " << Z << " A= " << A
206 << " Eexc(MeV)= " << eexc/MeV << " "
207 << theDef << G4endl;
208 */
209 }
210 G4double ekin = std::max(0.0,etot - theDef->GetPDGMass());
211 if (verboseLevel > 1) {
212 G4cout << i << ". " << theDef->GetParticleName()
213 << " Ekin(MeV)= " << etot/MeV
214 << " p: " << f->GetMomentum().vect()
215 << G4endl;
216 }
217 G4HadSecondary* news = new G4HadSecondary(
218 new G4DynamicParticle(theDef,
219 f->GetMomentum().vect().unit(),
220 ekin));
221 G4double timeF = f->GetCreationTime();
222 if(timeF < 0.0) { timeF = 0.0; }
223 news->SetTime(time + timeF);
224 if(theDef == electron) {
225 news->SetCreatorModelID(icID);
226 } else {
227 news->SetCreatorModelID(secID);
228 }
230 delete news;
231 delete f;
232 }
233 delete fv;
234 }
235 //G4cout << "Capture done" << G4endl;
236 return &theParticleChange;
237}
std::vector< G4Fragment * > G4FragmentVector
Definition G4Fragment.hh:65
@ stopAndKill
#define noFloat
Definition G4Ions.hh:119
#define M(row, col)
G4ThreeVector G4RandomDirection()
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector boostVector() const
Hep3Vector vect() const
void set(double x, double y, double z, double t)
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
static G4Deuteron * Deuteron()
Definition G4Deuteron.cc:90
G4double GetExcitationEnergy() const
const G4LorentzVector & GetMomentum() const
G4double GetCreationTime() const
G4int GetZ_asInt() const
const G4ParticleDefinition * GetParticleDefinition() const
G4int GetA_asInt() const
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
void SetCreatorModelID(G4int id)
static G4He3 * He3()
Definition G4He3.cc:90
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4double GetNuclearMass(const G4double A, const G4double Z)
const G4String & GetParticleName() const
static G4Triton * Triton()
Definition G4Triton.cc:90
G4FragmentVector * BreakUpFragment(G4Fragment *theNucleus)

◆ InitialiseModel()

void G4NeutronRadCapture::InitialiseModel ( )
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 76 of file G4NeutronRadCapture.cc.

77{
78 if(photonEvaporation != nullptr) { return; }
79 G4DeexPrecoParameters* param =
81 minExcitation = param->GetMinExcitation();
82 icID = G4PhysicsModelCatalog::GetModelID("model_e-InternalConversion");
84 photonEvaporation = new G4PhotonEvaporation();
85 photonEvaporation->Initialise();
86 photonEvaporation->SetICM(true);
87}
const G4String & GetModelName() const
G4DeexPrecoParameters * GetParameters()
static G4NuclearLevelData * GetInstance()
static G4int GetModelID(const G4int modelIndex)
virtual void SetICM(G4bool)

The documentation for this class was generated from the following files: