Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BinaryLightIonReaction.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26#include <algorithm>
27#include <vector>
28#include <cmath>
29#include <numeric>
30
33#include "G4SystemOfUnits.hh"
34#include "G4LorentzVector.hh"
35#include "G4LorentzRotation.hh"
37#include "G4ping.hh"
38#include "G4Delete.hh"
39#include "G4Neutron.hh"
40#include "G4VNuclearDensity.hh"
41#include "G4FermiMomentum.hh"
42#include "G4HadTmpUtil.hh"
43#include "G4PreCompoundModel.hh"
45#include "G4Log.hh"
48
49G4int G4BinaryLightIonReaction::theBLIR_ID = -1;
50
51//#define debug_G4BinaryLightIonReaction
52//#define debug_BLIR_finalstate
53//#define debug_BLIR_result
54
56: G4HadronicInteraction("Binary Light Ion Cascade"),
57 theProjectileFragmentation(ptr),
58 pA(0),pZ(0), tA(0),tZ(0),spectatorA(0),spectatorZ(0),
59 projectile3dNucleus(0),target3dNucleus(0)
60{
61 if(!ptr) {
64 G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
65 if(!pre) { pre = new G4PreCompoundModel(); }
66 theProjectileFragmentation = pre;
67 }
68 theModel = new G4BinaryCascade(theProjectileFragmentation);
69 theHandler = theProjectileFragmentation->GetExcitationHandler();
70 theBLIR_ID = G4PhysicsModelCatalog::GetModelID("model_G4BinaryLightIonReaction");
71 debug_G4BinaryLightIonReactionResults = G4HadronicParameters::Instance()->GetBinaryDebug();
72}
73
76
77void G4BinaryLightIonReaction::ModelDescription(std::ostream& outFile) const
78{
79 outFile << "G4Binary Light Ion Cascade is an intra-nuclear cascade model\n"
80 << "using G4BinaryCasacde to model the interaction of a light\n"
81 << "nucleus with a nucleus.\n"
82 << "The lighter of the two nuclei is treated like a set of projectiles\n"
83 << "which are transported simultaneously through the heavier nucleus.\n";
84}
85
86//--------------------------------------------------------------------------------
91
93ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus & targetNucleus )
94{
95 if(debug_G4BinaryLightIonReactionResults) G4cerr << " ######### Binary Light Ion Reaction starts ######### " << G4endl;
96 G4ping debug("debug_G4BinaryLightIonReaction");
97 pA=aTrack.GetDefinition()->GetBaryonNumber();
98 pZ=G4lrint(aTrack.GetDefinition()->GetPDGCharge()/eplus);
99 tA=targetNucleus.GetA_asInt();
100 tZ=targetNucleus.GetZ_asInt();
101 G4double timePrimary = aTrack.GetGlobalTime();
102 G4LorentzVector mom(aTrack.Get4Momentum());
103 //G4cout << "proj mom : " << mom << G4endl;
104 G4LorentzRotation toBreit(mom.boostVector());
105
106 G4bool swapped=SetLighterAsProjectile(mom, toBreit);
107 //G4cout << "after swap, swapped? / mom " << swapped << " / " << mom <<G4endl;
108 G4ReactionProductVector * result = 0;
109 G4ReactionProductVector * cascaders=0; //new G4ReactionProductVector;
110// G4double m_nucl(0); // to check energy balance
111
112
113 // G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ,pA);
114 // G4cout << "Entering the decision point "
115 // << (mom.t()-mom.mag())/pA << " "
116 // << pA<<" "<< pZ<<" "
117 // << tA<<" "<< tZ<<G4endl
118 // << " "<<mom.t()-mom.mag()<<" "
119 // << mom.t()- m1<<G4endl;
120 if( (mom.t()-mom.mag())/pA < 50*MeV )
121 {
122 // G4cout << "Using pre-compound only, E= "<<mom.t()-mom.mag()<<G4endl;
123 // m_nucl = mom.mag();
124 cascaders=FuseNucleiAndPrompound(mom);
125 if( !cascaders )
126 {
127
128 // abort!! happens for too low energy for nuclei to fuse
129
130 theResult.Clear();
131 theResult.SetStatusChange(isAlive);
132 theResult.SetEnergyChange(aTrack.GetKineticEnergy());
133 theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
134 return &theResult;
135 }
136 }
137 else
138 {
139 result=Interact(mom,toBreit);
140
141 if(! result )
142 {
143 // abort!!
144
145 G4cerr << "G4BinaryLightIonReaction no final state for: " << G4endl;
146 G4cerr << " Primary " << aTrack.GetDefinition()
147 << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
148 << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
149 << ", kinetic energy " << aTrack.GetKineticEnergy()
150 << G4endl;
151 G4cerr << " Target nucleus (A,Z)=("
152 << (swapped?pA:tA) << ","
153 << (swapped?pZ:tZ) << ")" << G4endl;
154 G4cerr << " if frequent, please submit above information as bug report"
155 << G4endl << G4endl;
156
157 theResult.Clear();
158 theResult.SetStatusChange(isAlive);
159 theResult.SetEnergyChange(aTrack.GetKineticEnergy());
160 theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
161 return &theResult;
162 }
163
164 // Calculate excitation energy,
165 G4double theStatisticalExEnergy = GetProjectileExcitation();
166
167
168 pInitialState = mom;
169 //G4cout << "BLIC: pInitialState from aTrack : " << pInitialState;
170 pInitialState.setT(pInitialState.getT() +
172 //G4cout << "BLIC: target nucleus added : " << pInitialState << G4endl;
173
174 delete target3dNucleus;target3dNucleus=0;
175 delete projectile3dNucleus;projectile3dNucleus=0;
176
178
179 cascaders = new G4ReactionProductVector;
180
181 G4LorentzVector pspectators=SortResult(result,spectators,cascaders);
182 // this also sets spectatorA and spectatorZ
183
184 // pFinalState=std::accumulate(cascaders->begin(),cascaders->end(),pFinalState,ReactionProduct4Mom);
185
186 std::vector<G4ReactionProduct *>::iterator iter;
187
188 // G4cout << "pInitialState, pFinalState / pspectators"<< pInitialState << " / " << pFinalState << " / " << pspectators << G4endl;
189 // if ( spectA-spectatorA !=0 || spectZ-spectatorZ !=0)
190 // {
191 // G4cout << "spect Nucl != spectators: nucl a,z; spect a,z" <<
192 // spectatorA <<" "<< spectatorZ <<" ; " << spectA <<" "<< spectZ << G4endl;
193 // }
194 delete result;
195 result=0;
196 G4LorentzVector momentum(pInitialState-pFinalState);
197 G4int loopcount(0);
198 //G4cout << "BLIC: momentum, pspectators : " << momentum << " / " << pspectators << G4endl;
199 while (std::abs(momentum.e()-pspectators.e()) > 10*MeV) /* Loop checking, 31.08.2015, G.Folger */
200 // see if on loopcount
201 {
202 G4LorentzVector pCorrect(pInitialState-pspectators);
203 //G4cout << "BLIC:: BIC nonconservation? (pInitialState-pFinalState) / spectators :" << momentum << " / " << pspectators << "pCorrect "<< pCorrect<< G4endl;
204 // Correct outgoing casacde particles.... to have momentum of (initial state - spectators)
205 G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCorrect);
206 if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
207 {
208 G4cout << "Warning - G4BinaryLightIonReaction E/P correction for cascaders failed" << G4endl;
209 }
210 pFinalState=G4LorentzVector(0,0,0,0);
211 for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
212 {
213 pFinalState += G4LorentzVector( (*iter)->GetMomentum(), (*iter)->GetTotalEnergy() );
214 }
215 momentum=pInitialState-pFinalState;
216 if (++loopcount > 10 )
217 {
218 break;
219 }
220 }
221
222// Check if Energy/Momemtum is now ok, if not return initial state
223 if ( std::abs(momentum.e()-pspectators.e()) > 10*MeV )
224 {
225 for (iter=spectators->begin();iter!=spectators->end();iter++)
226 {
227 delete *iter;
228 }
229 delete spectators;
230 for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
231 {
232 delete *iter;
233 }
234 delete cascaders;
235
236 G4cout << "G4BinaryLightIonReaction.cc: mom check: " << G4endl
237 << " initial - final " << momentum << " 3.mag "<< momentum.vect().mag() << G4endl
238 << " .. pInitialState/pFinalState/spectators " << G4endl
239 << pInitialState << G4endl
240 << pFinalState << G4endl
241 << pspectators << G4endl
242 << " .. A,Z " << spectatorA <<" "<< spectatorZ << G4endl;
243 G4cout << "G4BinaryLightIonReaction invalid final state for: " << G4endl;
244 G4cout << " Primary " << aTrack.GetDefinition()
245 << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
246 << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
247 << ", kinetic energy " << aTrack.GetKineticEnergy()
248 << G4endl;
249 G4cout << " Target nucleus (A,Z)=(" << targetNucleus.GetA_asInt()
250 << "," << targetNucleus.GetZ_asInt() << ")" << G4endl;
251 G4cout << " if frequent, please submit above information as bug report"
252 << G4endl << G4endl;
253#ifdef debug_G4BinaryLightIonReaction
255 ed << "G4BinaryLightIonreaction: Terminate for above error" << G4endl;
256 G4Exception("G4BinaryLightIonreaction::ApplyYourSelf()", "BLIC001", FatalException,
257 ed);
258
259#endif
260 theResult.Clear();
261 theResult.SetStatusChange(isAlive);
262 theResult.SetEnergyChange(aTrack.GetKineticEnergy());
263 theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
264 return &theResult;
265
266 }
267 if (spectatorA > 0 )
268 {
269 // DeExciteSpectatorNucleus() also handles also case of A=1, Z=0,1
270 DeExciteSpectatorNucleus(spectators, cascaders, theStatisticalExEnergy, momentum);
271 } else { // no spectators
272 delete spectators;
273 }
274 }
275 // Rotate to lab
277 toZ.rotateZ(-1*mom.phi());
278 toZ.rotateY(-1*mom.theta());
279 G4LorentzRotation toLab(toZ.inverse());
280
281 // Fill the particle change, while rotating. Boost from projectile breit-frame in case we swapped.
282 // theResult.Clear();
283 theResult.Clear();
284 theResult.SetStatusChange(stopAndKill);
285 G4LorentzVector ptot(0);
286 #ifdef debug_BLIR_result
287 G4LorentzVector p_raw;
288 #endif
289 //G4int i=0;
290
291 G4ReactionProductVector::iterator iter;
292 for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
293 {
294 if((*iter)->GetNewlyAdded())
295 {
296 G4DynamicParticle * aNewDP =
297 new G4DynamicParticle((*iter)->GetDefinition(),
298 (*iter)->GetTotalEnergy(),
299 (*iter)->GetMomentum() );
300 G4LorentzVector tmp = aNewDP->Get4Momentum();
301 #ifdef debug_BLIR_result
302 p_raw+= tmp;
303 #endif
304 if(swapped)
305 {
306 tmp*=toBreit.inverse();
307 tmp.setVect(-tmp.vect());
308 }
309 tmp *= toLab;
310 aNewDP->Set4Momentum(tmp);
311 G4HadSecondary aNew = G4HadSecondary(aNewDP);
312 G4double time = 0; //(*iter)->GetCreationTime();
313 //if(time < 0.0) { time = 0.0; }
314 aNew.SetTime(timePrimary + time);
315 //aNew.SetCreatorModelID((*iter)->GetCreatorModelID()); //AR-02Aug2021 : For some reasons, it does NOT work!
316 aNew.SetCreatorModelID(theBLIR_ID);
317
318 theResult.AddSecondary(aNew);
319 ptot += tmp;
320 //G4cout << "BLIC: Secondary " << aNew->GetDefinition()->GetParticleName()
321 // <<" "<< aNew->GetMomentum()<<" "<< aNew->GetTotalEnergy() << G4endl;
322 }
323 delete *iter;
324 }
325 delete cascaders;
326
327#ifdef debug_BLIR_result
328 //G4cout << "Result analysis, secondaries " << theResult.GetNumberOfSecondaries() << G4endl;
329 //G4cout << "p_tot_raw " << p_raw << " sum p final " << ptot << G4endl;
331 GetIonMass(targetNucleus.GetZ_asInt(),targetNucleus.GetA_asInt());
332 // delete? tZ=targetNucleus.GetZ_asInt();
333
334 //G4cout << "BLIC Energy conservation initial/primary/nucleus/final/delta(init-final) "
335 // << aTrack.GetTotalEnergy() + m_nucl <<" "<< aTrack.GetTotalEnergy() <<" "<< m_nucl <<" "<<ptot.e()
336 // <<" "<< aTrack.GetTotalEnergy() + m_nucl - ptot.e() << G4endl;
337 G4cout << "BLIC momentum conservation " << aTrack.Get4Momentum()+ G4LorentzVector(m_nucl)
338 << " ptot " << ptot << " delta " << aTrack.Get4Momentum()+ G4LorentzVector(m_nucl) - ptot
339 << " 3mom.mag() " << (aTrack.Get4Momentum()+ G4LorentzVector(m_nucl) - ptot).vect().mag() << G4endl;
340#endif
341
342 if(debug_G4BinaryLightIonReactionResults) G4cerr << " ######### Binary Light Ion Reaction number ends ######### " << G4endl;
343
344 return &theResult;
345}
346
347//--------------------------------------------------------------------------------
348
349//****************************************************************************
350G4bool G4BinaryLightIonReaction::EnergyAndMomentumCorrector(
351 G4ReactionProductVector* Output, G4LorentzVector& TotalCollisionMom)
352//****************************************************************************
353{
354 const int nAttemptScale = 2500;
355 const double ErrLimit = 1.E-6;
356 if (Output->empty())
357 return TRUE;
358 G4LorentzVector SumMom(0,0,0,0);
359 G4double SumMass = 0;
360 G4double TotalCollisionMass = TotalCollisionMom.m();
361 size_t i = 0;
362 // Calculate sum hadron 4-momenta and summing hadron mass
363 for(i = 0; i < Output->size(); i++)
364 {
365 SumMom += G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
366 SumMass += (*Output)[i]->GetDefinition()->GetPDGMass();
367 }
368 // G4cout << " E/P corrector, SumMass, SumMom.m2, TotalMass "
369 // << SumMass <<" "<< SumMom.m2() <<" "<<TotalCollisionMass<< G4endl;
370 if (SumMass > TotalCollisionMass) return FALSE;
371 SumMass = SumMom.m2();
372 if (SumMass < 0) return FALSE;
373 SumMass = std::sqrt(SumMass);
374
375 // Compute c.m.s. hadron velocity and boost KTV to hadron c.m.s.
376 G4ThreeVector Beta = -SumMom.boostVector();
377 //G4cout << " == pre boost 2 "<< SumMom.e()<< " "<< SumMom.mag()<<" "<< Beta <<G4endl;
378 //--old Output->Boost(Beta);
379 for(i = 0; i < Output->size(); i++)
380 {
381 G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
382 mom *= Beta;
383 (*Output)[i]->SetMomentum(mom.vect());
384 (*Output)[i]->SetTotalEnergy(mom.e());
385 }
386
387 // Scale total c.m.s. hadron energy (hadron system mass).
388 // It should be equal interaction mass
389 G4double Scale = 0,OldScale=0;
390 G4double factor = 1.;
391 G4int cAttempt = 0;
392 G4double Sum = 0;
393 G4bool success = false;
394 for(cAttempt = 0; cAttempt < nAttemptScale; cAttempt++)
395 {
396 Sum = 0;
397 for(i = 0; i < Output->size(); i++)
398 {
399 G4LorentzVector HadronMom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
400 HadronMom.setVect(HadronMom.vect()+ factor*Scale*HadronMom.vect());
401 G4double E = std::sqrt(HadronMom.vect().mag2() + sqr((*Output)[i]->GetDefinition()->GetPDGMass()));
402 HadronMom.setE(E);
403 (*Output)[i]->SetMomentum(HadronMom.vect());
404 (*Output)[i]->SetTotalEnergy(HadronMom.e());
405 Sum += E;
406 }
407 OldScale=Scale;
408 Scale = TotalCollisionMass/Sum - 1;
409 // G4cout << "E/P corr - " << cAttempt << " " << Scale << G4endl;
410 if (std::abs(Scale) <= ErrLimit
411 || OldScale == Scale) // protect 'frozen' situation and divide by 0 in calculating new factor below
412 {
413 if (debug_G4BinaryLightIonReactionResults) G4cout << "E/p corrector: " << cAttempt << G4endl;
414 success = true;
415 break;
416 }
417 if ( cAttempt > 10 )
418 {
419 // G4cout << " speed it up? " << std::abs(OldScale/(OldScale-Scale)) << G4endl;
420 factor=std::max(1.,G4Log(std::abs(OldScale/(OldScale-Scale))));
421 // G4cout << " ? factor ? " << factor << G4endl;
422 }
423 }
424
425 if( (!success) && debug_G4BinaryLightIonReactionResults)
426 {
427 G4cout << "G4G4BinaryLightIonReaction::EnergyAndMomentumCorrector - Warning"<<G4endl;
428 G4cout << " Scale not unity at end of iteration loop: "<<TotalCollisionMass<<" "<<Sum<<" "<<Scale<<G4endl;
429 G4cout << " Increase number of attempts or increase ERRLIMIT"<<G4endl;
430 }
431
432 // Compute c.m.s. interaction velocity and KTV back boost
433 Beta = TotalCollisionMom.boostVector();
434 //--old Output->Boost(Beta);
435 for(i = 0; i < Output->size(); i++)
436 {
437 G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
438 mom *= Beta;
439 (*Output)[i]->SetMomentum(mom.vect());
440 (*Output)[i]->SetTotalEnergy(mom.e());
441 }
442 return TRUE;
443}
444G4bool G4BinaryLightIonReaction::SetLighterAsProjectile(G4LorentzVector & mom,const G4LorentzRotation & toBreit)
445{
446 G4bool swapped = false;
447 if(tA<pA)
448 {
449 swapped = true;
450 G4int tmp(0);
451 tmp = tA; tA=pA; pA=tmp;
452 tmp = tZ; tZ=pZ; pZ=tmp;
454 G4LorentzVector it(m1, G4ThreeVector(0,0,0));
455 mom = toBreit*it;
456 }
457 return swapped;
458}
459G4ReactionProductVector * G4BinaryLightIonReaction::FuseNucleiAndPrompound(const G4LorentzVector & mom)
460{
461 // Check if kinematically nuclei can fuse.
464 G4LorentzVector pCompound(mom.e()+mTarget,mom.vect());
465 G4double m2Compound=pCompound.m2();
466 if (m2Compound < sqr(mFused) ) {
467 //G4cout << "G4BLIC: projectile p, mTarget, mFused, mCompound, delta: " <<mom << " " << mTarget << " " << mFused
468 // << " " << sqrt(m2Compound)<< " " << sqrt(m2Compound) - mFused << G4endl;
469 return 0;
470 }
471
472 G4Fragment aPreFrag;
473 aPreFrag.SetZandA_asInt(pZ+tZ, pA+tA);
474 aPreFrag.SetNumberOfParticles(pA);
475 aPreFrag.SetNumberOfCharged(pZ);
476 aPreFrag.SetNumberOfHoles(0);
477 //GF FIXME: whyusing plop in z direction? this will not conserve momentum?
478 //G4ThreeVector plop(0.,0., mom.vect().mag());
479 //G4LorentzVector aL(mom.t()+mTarget, plop);
480 G4LorentzVector aL(mom.t()+mTarget,mom.vect());
481 aPreFrag.SetMomentum(aL);
482
483
484 //G4cout << "Fragment INFO "<< pA+tA <<" "<<pZ+tZ<<" "
485 // << aL <<" "<<G4endl << aPreFrag << G4endl;
486 G4ReactionProductVector * cascaders = theProjectileFragmentation->DeExcite(aPreFrag);
487 //G4double tSum = 0;
488 for(size_t count = 0; count<cascaders->size(); count++)
489 {
490 cascaders->operator[](count)->SetNewlyAdded(true);
491 //tSum += cascaders->operator[](count)->GetKineticEnergy();
492 }
493 // G4cout << "Exiting pre-compound only, E= "<<tSum<<G4endl;
494 return cascaders;
495}
496G4ReactionProductVector * G4BinaryLightIonReaction::Interact(G4LorentzVector & mom, const G4LorentzRotation & toBreit)
497{
498 G4ReactionProductVector * result = 0;
499 G4double projectileMass(0);
501
502 G4int tryCount(0);
503 do
504 {
505 ++tryCount;
506 projectile3dNucleus = new G4Fancy3DNucleus;
507 projectile3dNucleus->Init(pA, pZ);
508 projectile3dNucleus->CenterNucleons();
510 projectile3dNucleus->GetCharge(),projectile3dNucleus->GetMassNumber());
511 it=toBreit * G4LorentzVector(projectileMass,G4ThreeVector(0,0,0));
512
513 target3dNucleus = new G4Fancy3DNucleus;
514 target3dNucleus->Init(tA, tZ);
515 G4double impactMax = target3dNucleus->GetOuterRadius()+projectile3dNucleus->GetOuterRadius();
516 // G4cout << "out radius - nucleus - projectile " << target3dNucleus->GetOuterRadius()/fermi << " - " << projectile3dNucleus->GetOuterRadius()/fermi << G4endl;
517 G4double aX=(2.*G4UniformRand()-1.)*impactMax;
518 G4double aY=(2.*G4UniformRand()-1.)*impactMax;
519 G4ThreeVector pos(aX, aY, -2.*impactMax-5.*fermi);
520
521 G4KineticTrackVector * initalState = new G4KineticTrackVector;
522 projectile3dNucleus->StartLoop();
523 G4Nucleon * aNuc;
524 G4LorentzVector tmpV(0,0,0,0);
525 #ifdef debug_BLIR_finalstate
526 G4LorentzVector pinitial;
527 #endif
528 G4LorentzVector nucleonMom(1./pA*mom);
529 nucleonMom.setZ(nucleonMom.vect().mag());
530 nucleonMom.setX(0);
531 nucleonMom.setY(0);
532 theFermi.Init(pA,pZ);
533 while( (aNuc=projectile3dNucleus->GetNextNucleon()) ) /* Loop checking, 31.08.2015, G.Folger */
534 {
535 G4LorentzVector p4 = aNuc->GetMomentum();
536 tmpV+=p4;
537 G4ThreeVector nucleonPosition(aNuc->GetPosition());
538 G4double density=(projectile3dNucleus->GetNuclearDensity())->GetDensity(nucleonPosition);
539 nucleonPosition += pos;
540 G4KineticTrack * it1 = new G4KineticTrack(aNuc, nucleonPosition, nucleonMom );
542 G4double pfermi= theFermi.GetFermiMomentum(density);
543 G4double mass = aNuc->GetDefinition()->GetPDGMass();
544 G4double Efermi= std::sqrt( sqr(mass) + sqr(pfermi)) - mass;
545 it1->SetProjectilePotential(-Efermi);
546 initalState->push_back(it1);
547 #ifdef debug_BLIR_finalstate
548 pinitial += it1->Get4Momentum();
549 #endif
550 }
551
552 result=theModel->Propagate(initalState, target3dNucleus);
553 #ifdef debug_BLIR_finalstate
554 if( result && result->size()>0)
555 {
556 G4cout << " Cascade result " << G4endl;
557 G4LorentzVector presult;
558 G4ReactionProductVector::iterator iter;
560 for (iter=result->begin(); iter !=result->end(); ++iter)
561 {
562 presult += G4LorentzVector((*iter)->GetMomentum(),(*iter)->GetTotalEnergy());
563 G4cout << (*iter)->GetDefinition()->GetParticleName() << " : "
564 << "("<< (*iter)->GetMomentum().x()<<","
565 << (*iter)->GetMomentum().y()<<","
566 << (*iter)->GetMomentum().z()<<";"
567 << (*iter)->GetTotalEnergy() <<")"<< G4endl;
568 }
569
570 G4cout << "BLIC check result : initial " << pinitial << " mass tgt " << target3dNucleus->GetMass()
571 << " final " << presult
572 << " IF - FF " << pinitial +G4LorentzVector(target3dNucleus->GetMass()) - presult << G4endl;
573
574 }
575 #endif
576 if( result && result->size()==0)
577 {
578 delete result;
579 result=0;
580 }
581 if ( ! result )
582 {
583 delete target3dNucleus;
584 delete projectile3dNucleus;
585 }
586
587 // std::for_each(initalState->begin(), initalState->end(), Delete<G4KineticTrack>());
588 // delete initalState;
589
590 } while (! result && tryCount< 150); /* Loop checking, 31.08.2015, G.Folger */
591 return result;
592}
593G4double G4BinaryLightIonReaction::GetProjectileExcitation()
594{
595
596 G4Nucleon * aNuc;
597 // the projectileNucleus excitation energy estimate...
598 G4double theStatisticalExEnergy = 0;
599 projectile3dNucleus->StartLoop();
600 while( (aNuc=projectile3dNucleus->GetNextNucleon()) ) /* Loop checking, 31.08.2015, G.Folger */
601 {
602 //G4cout << " Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl;
603 if(aNuc->AreYouHit()) {
604 G4ThreeVector aPosition(aNuc->GetPosition());
605 G4double localDensity = projectile3dNucleus->GetNuclearDensity()->GetDensity(aPosition);
606 G4double localPfermi = theFermi.GetFermiMomentum(localDensity);
607 G4double nucMass = aNuc->GetDefinition()->GetPDGMass();
608 G4double localFermiEnergy = std::sqrt(nucMass*nucMass + localPfermi*localPfermi) - nucMass;
609 G4double deltaE = localFermiEnergy - (aNuc->GetMomentum().t()-aNuc->GetMomentum().mag());
610 theStatisticalExEnergy += deltaE;
611 }
612 }
613 return theStatisticalExEnergy;
614}
615
616G4LorentzVector G4BinaryLightIonReaction::SortResult(G4ReactionProductVector * result, G4ReactionProductVector * spectators,G4ReactionProductVector * cascaders)
617{
618 unsigned int i(0);
619 spectatorA=spectatorZ=0;
620 G4LorentzVector pspectators(0,0,0,0);
621 pFinalState=G4LorentzVector(0,0,0,0);
622 for(i=0; i<result->size(); i++)
623 {
624 if( (*result)[i]->GetNewlyAdded() )
625 {
626 pFinalState += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
627 cascaders->push_back((*result)[i]);
628 }
629 else {
630 // G4cout <<" spectator ... ";
631 pspectators += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
632 spectators->push_back((*result)[i]);
633 spectatorA++;
634 spectatorZ+= G4lrint((*result)[i]->GetDefinition()->GetPDGCharge()/eplus);
635 }
636
637 // G4cout << (*result)[i]<< " "
638 // << (*result)[i]->GetDefinition()->GetParticleName() << " "
639 // << (*result)[i]->GetMomentum()<< " "
640 // << (*result)[i]->GetTotalEnergy() << G4endl;
641 }
642 //G4cout << "pFinalState / pspectators, (A,Z), p " << pFinalState << " / " << spectators->size()
643 // << " (" << spectatorA << ", "<< spectatorZ << "), 4-mom: " << pspectators << G4endl;
644
645 return pspectators;
646}
647
648void G4BinaryLightIonReaction::DeExciteSpectatorNucleus(G4ReactionProductVector * spectators, G4ReactionProductVector * cascaders,
649 G4double theStatisticalExEnergy, G4LorentzVector & pSpectators)
650{
651 // call precompound model
652 G4ReactionProductVector * proFrag = 0;
653 G4LorentzVector pFragment(0.,0.,0.,0.);
654 // G4cout << " == pre boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
655 G4LorentzRotation boost_fragments;
656 // G4cout << " == post boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
657 // G4LorentzRotation boost_spectator_mom(-momentum.boostVector());
658 // G4cout << "- momentum " << boost_spectator_mom * momentum << G4endl;
659 G4LorentzVector pFragments(0,0,0,0);
660
661 if(spectatorZ>0 && spectatorA>1)
662 {
663 // Make the fragment
664 G4Fragment aProRes;
665 aProRes.SetZandA_asInt(spectatorZ, spectatorA);
666 aProRes.SetNumberOfParticles(0);
667 aProRes.SetNumberOfCharged(0);
668 aProRes.SetNumberOfHoles(pA-spectatorA);
669 G4double mFragment=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(spectatorZ,spectatorA);
670 pFragment=G4LorentzVector(0,0,0,mFragment+std::max(0.,theStatisticalExEnergy) );
671 aProRes.SetMomentum(pFragment);
672
673 proFrag = theHandler->BreakItUp(aProRes);
674
675 boost_fragments = G4LorentzRotation(pSpectators.boostVector());
676
677 // G4cout << " Fragment a,z, Mass Fragment, mass spect-mom, exitationE "
678 // << spectatorA <<" "<< spectatorZ <<" "<< mFragment <<" "
679 // << momentum.mag() <<" "<< momentum.mag() - mFragment
680 // << " "<<theStatisticalExEnergy
681 // << " "<< boost_fragments*pFragment<< G4endl;
682 G4ReactionProductVector::iterator ispectator;
683 for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
684 {
685 delete *ispectator;
686 }
687 }
688 else if(spectatorA!=0)
689 {
690 G4ReactionProductVector::iterator ispectator;
691 for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
692 {
693 (*ispectator)->SetNewlyAdded(true);
694 cascaders->push_back(*ispectator);
695 pFinalState+=G4LorentzVector((*ispectator)->GetMomentum(),(*ispectator)->GetTotalEnergy());
696 //G4cout << "BLIC: spectatorA>0, Z=0 from spectator "
697 // << (*ispectator)->GetDefinition()->GetParticleName() << " "
698 // << (*ispectator)->GetMomentum()<< " "
699 // << (*ispectator)->GetTotalEnergy() << G4endl;
700 }
701
702 }
703 // / if (spectators)
704 delete spectators;
705
706 // collect the evaporation part and boost to spectator frame
707 G4ReactionProductVector::iterator ii;
708 if(proFrag)
709 {
710 for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
711 {
712 (*ii)->SetNewlyAdded(true);
713 G4LorentzVector tmp((*ii)->GetMomentum(),(*ii)->GetTotalEnergy());
714 tmp *= boost_fragments;
715 (*ii)->SetMomentum(tmp.vect());
716 (*ii)->SetTotalEnergy(tmp.e());
717 // result->push_back(*ii);
718 pFragments += tmp;
719 }
720 }
721
722 // G4cout << "Fragmented p, momentum, delta " << pFragments <<" "<<momentum
723 // <<" "<< pFragments-momentum << G4endl;
724
725 // correct p/E of Cascade secondaries
726 G4LorentzVector pCas=pInitialState - pFragments;
727
728 //G4cout <<"BLIC: Going to correct from " << pFinalState << " to " << pCas << G4endl;
729 // the creation of excited fragment did violate E/p, so correct cascaders to get overall conservation.
730 G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCas);
731 if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
732 {
733 G4cout << "G4BinaryLightIonReaction E/P correction for nucleus failed, will try to correct overall" << G4endl;
734 }
735
736 // Add deexcitation secondaries
737 if(proFrag)
738 {
739 for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
740 {
741 cascaders->push_back(*ii);
742 }
743 delete proFrag;
744 }
745 //G4cout << "EnergyIsCorrect? " << EnergyIsCorrect << G4endl;
746 if ( ! EnergyIsCorrect )
747 {
748 // G4cout <<" ! EnergyIsCorrect " << pFinalState << " to " << pInitialState << G4endl;
749 if (! EnergyAndMomentumCorrector(cascaders,pInitialState))
750 {
751 if(debug_G4BinaryLightIonReactionResults)
752 G4cout << "G4BinaryLightIonReaction E/P corrections failed" << G4endl;
753 }
754 }
755
756}
757
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
@ isAlive
@ stopAndKill
G4double G4Log(G4double x)
Definition G4Log.hh:227
CLHEP::HepLorentzRotation G4LorentzRotation
CLHEP::HepLorentzVector G4LorentzVector
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
Hep3Vector unit() const
double mag2() const
double mag() const
HepLorentzRotation & rotateY(double delta)
HepLorentzRotation & rotateZ(double delta)
HepLorentzRotation inverse() const
double theta() const
Hep3Vector boostVector() const
Hep3Vector vect() const
void setVect(const Hep3Vector &)
virtual G4ReactionProductVector * Propagate(G4KineticTrackVector *, G4V3DNucleus *)
G4BinaryLightIonReaction(G4VPreCompoundModel *ptr=0)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
virtual void ModelDescription(std::ostream &) const
G4LorentzVector Get4Momentum() const
void Set4Momentum(const G4LorentzVector &momentum)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4Nucleon * GetNextNucleon()
const G4VNuclearDensity * GetNuclearDensity() const
void Init(G4int theA, G4int theZ, G4int numberOfLambdas=0)
G4double GetFermiMomentum(G4double density)
void Init(G4int anA, G4int aZ)
void SetZandA_asInt(G4int Znew, G4int Anew, G4int Lnew=0)
void SetNumberOfCharged(G4int value)
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
void SetMomentum(const G4LorentzVector &value)
void SetNumberOfParticles(G4int value)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
void SetCreatorModelID(G4int id)
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
static G4HadronicParameters * Instance()
G4double GetIonMass(G4int Z, G4int A, G4int nL=0, G4int lvl=0) const
CascadeState SetState(const CascadeState new_state)
void SetProjectilePotential(const G4double aPotential)
const G4LorentzVector & Get4Momentum() const
const G4ThreeVector & GetPosition() const
Definition G4Nucleon.hh:140
G4bool AreYouHit() const
Definition G4Nucleon.hh:98
const G4LorentzVector & GetMomentum() const
Definition G4Nucleon.hh:71
virtual const G4ParticleDefinition * GetDefinition() const
Definition G4Nucleon.hh:86
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4int GetModelID(const G4int modelIndex)
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
G4double GetDensity(const G4ThreeVector &aPosition) const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)=0
G4ExcitationHandler * GetExcitationHandler() const
#define TRUE
Definition globals.hh:41
#define FALSE
Definition globals.hh:38
G4LorentzVector operator()(G4LorentzVector a, G4ReactionProduct *b)
int G4lrint(double ad)
Definition templates.hh:134
T sqr(const T &x)
Definition templates.hh:128