Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PreCompoundModel Class Reference

#include <G4PreCompoundModel.hh>

+ Inheritance diagram for G4PreCompoundModel:

Public Member Functions

 G4PreCompoundModel (G4ExcitationHandler *ptr=nullptr)
 
virtual ~G4PreCompoundModel ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &thePrimary, G4Nucleus &theNucleus) final
 
virtual G4ReactionProductVectorDeExcite (G4Fragment &aFragment) final
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &) final
 
virtual void InitialiseModel () final
 
virtual void ModelDescription (std::ostream &outFile) const final
 
virtual void DeExciteModelDescription (std::ostream &outFile) const final
 
- Public Member Functions inherited from G4VPreCompoundModel
 G4VPreCompoundModel (G4ExcitationHandler *ptr=nullptr, const G4String &modelName="PrecompoundModel")
 
virtual ~G4VPreCompoundModel ()
 
void SetExcitationHandler (G4ExcitationHandler *ptr)
 
G4ExcitationHandlerGetExcitationHandler () const
 
 G4VPreCompoundModel (const G4VPreCompoundModel &)=delete
 
const G4VPreCompoundModeloperator= (const G4VPreCompoundModel &right)=delete
 
G4bool operator== (const G4VPreCompoundModel &right) const =delete
 
G4bool operator!= (const G4VPreCompoundModel &right) const =delete
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 62 of file G4PreCompoundModel.hh.

Constructor & Destructor Documentation

◆ G4PreCompoundModel()

G4PreCompoundModel::G4PreCompoundModel ( G4ExcitationHandler * ptr = nullptr)
explicit

Definition at line 70 of file G4PreCompoundModel.cc.

71 : G4VPreCompoundModel(ptr,"PRECO")
72{
73 //G4cout << "### NEW PrecompoundModel " << this << G4endl;
74 if(nullptr == ptr) { SetExcitationHandler(new G4ExcitationHandler()); }
75
77 proton = G4Proton::Proton();
78 neutron = G4Neutron::Neutron();
79 modelID = G4PhysicsModelCatalog::GetModelID("model_PRECO");
80}
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
static G4NuclearLevelData * GetInstance()
static G4int GetModelID(const G4int modelIndex)
static G4Proton * Proton()
Definition G4Proton.cc:90
G4VPreCompoundModel(G4ExcitationHandler *ptr=nullptr, const G4String &modelName="PrecompoundModel")
void SetExcitationHandler(G4ExcitationHandler *ptr)

◆ ~G4PreCompoundModel()

G4PreCompoundModel::~G4PreCompoundModel ( )
virtual

Definition at line 84 of file G4PreCompoundModel.cc.

85{
86 delete theEmission;
87 delete theTransition;
88 delete GetExcitationHandler();
89 theResult.Clear();
90}
G4ExcitationHandler * GetExcitationHandler() const

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4PreCompoundModel::ApplyYourself ( const G4HadProjectile & thePrimary,
G4Nucleus & theNucleus )
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 135 of file G4PreCompoundModel.cc.

137{
138 const G4ParticleDefinition* primary = thePrimary.GetDefinition();
139 if(primary != neutron && primary != proton) {
141 ed << "G4PreCompoundModel is used for ";
142 if(primary) { ed << primary->GetParticleName(); }
143 G4Exception("G4PreCompoundModel::ApplyYourself()","had0033",FatalException,
144 ed,"");
145 return nullptr;
146 }
147
148 G4int Zp = 0;
149 G4int Ap = 1;
150 if(primary == proton) { Zp = 1; }
151
152 G4double timePrimary=thePrimary.GetGlobalTime();
153
154 G4int A = theNucleus.GetA_asInt();
155 G4int Z = theNucleus.GetZ_asInt();
156
157 //G4cout << "### G4PreCompoundModel::ApplyYourself: A= " << A << " Z= " << Z
158 // << " Ap= " << Ap << " Zp= " << Zp << G4endl;
159 // 4-Momentum
160 G4LorentzVector p = thePrimary.Get4Momentum();
162 p += G4LorentzVector(0.0,0.0,0.0,mass);
163 //G4cout << "Primary 4-mom " << p << " mass= " << mass << G4endl;
164
165 // prepare fragment
166 G4Fragment anInitialState(A + Ap, Z + Zp, p);
167 anInitialState.SetNumberOfExcitedParticle(2, 1);
168 anInitialState.SetNumberOfHoles(1,0);
169 anInitialState.SetCreationTime(thePrimary.GetGlobalTime());
170 anInitialState.SetCreatorModelID(modelID);
171
172 // call excitation handler
173 G4ReactionProductVector* result = DeExcite(anInitialState);
174
175 // fill particle change
176 theResult.Clear();
177 theResult.SetStatusChange(stopAndKill);
178 for(auto const & prod : *result) {
179 G4DynamicParticle * aNewDP = new G4DynamicParticle(prod->GetDefinition(),
180 prod->GetTotalEnergy(),
181 prod->GetMomentum());
182 G4HadSecondary aNew = G4HadSecondary(aNewDP);
183 G4double time = std::max(prod->GetFormationTime(), 0.0);
184 aNew.SetTime(timePrimary + time);
185 aNew.SetCreatorModelID(prod->GetCreatorModelID());
186 delete prod;
187 theResult.AddSecondary(aNew);
188 }
189 delete result;
190
191 //return the filled particle change
192 return &theResult;
193}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
@ stopAndKill
CLHEP::HepLorentzVector G4LorentzVector
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
const G4double A[17]
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
void SetCreatorModelID(G4int id)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
const G4String & GetParticleName() const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment) final

◆ BuildPhysicsTable()

void G4PreCompoundModel::BuildPhysicsTable ( const G4ParticleDefinition & )
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 94 of file G4PreCompoundModel.cc.

95{
97}
virtual void InitialiseModel() final

◆ DeExcite()

G4ReactionProductVector * G4PreCompoundModel::DeExcite ( G4Fragment & aFragment)
finalvirtual

Implements G4VPreCompoundModel.

Definition at line 197 of file G4PreCompoundModel.cc.

198{
199 if(!isInitialised) { InitialiseModel(); }
200
202 G4double U = aFragment.GetExcitationEnergy();
203 G4int Z = aFragment.GetZ_asInt();
204 G4int A = aFragment.GetA_asInt();
205
206 //G4cout << "### G4PreCompoundModel::DeExcite" << G4endl;
207 //G4cout << aFragment << G4endl;
208
209 // Conditions to skip pre-compound and perform equilibrium emission
210 if (!isActive || (Z < minZ && A < minA) ||
211 U < fLowLimitExc*A || U > A*fHighLimitExc ||
212 0 < aFragment.GetNumberOfLambdas()) {
213 PerformEquilibriumEmission(aFragment, Result);
214 return Result;
215 }
216
217 // main loop
218 G4int count = 0;
219 const G4double ldfact = 12.0/CLHEP::pi2;
220 const G4int countmax = 1000;
221 for (;;) {
222 //G4cout << "### PreCompound loop over fragment" << G4endl;
223 //G4cout << aFragment << G4endl;
224 U = aFragment.GetExcitationEnergy();
225 Z = aFragment.GetZ_asInt();
226 A = aFragment.GetA_asInt();
227 G4int eqExcitonNumber =
228 G4lrint(std::sqrt(ldfact*U*fNuclData->GetLevelDensity(Z, A, U)));
229 //
230 // G4cout<<"Neq="<<EquilibriumExcitonNumber<<G4endl;
231 //
232 // J. M. Quesada (Jan. 08) equilibrium hole number could be used as preeq.
233 // evap. delimiter (IAEA report)
234
235 // Loop for transitions, it is performed while there are
236 // preequilibrium transitions.
237 G4bool isTransition = false;
238
239 // G4cout<<"----------------------------------------"<<G4endl;
240 // G4double NP=aFragment.GetNumberOfParticles();
241 // G4double NH=aFragment.GetNumberOfHoles();
242 // G4double NE=aFragment.GetNumberOfExcitons();
243 // G4cout<<" Ex. Energy="<<aFragment.GetExcitationEnergy()<<G4endl;
244 // G4cout<<"N. excitons="<<NE<<" N. Part="<<NP<<"N. Holes ="<<NH<<G4endl;
245 do {
246 ++count;
247 //G4cout<<"transition number .."<<count
248 // <<" n ="<<aFragment.GetNumberOfExcitons()<<G4endl;
249 // soft cutoff criterium as an "ad-hoc" solution to force
250 // increase in evaporation
251 G4int ne = aFragment.GetNumberOfExcitons();
252 G4bool go_ahead = (ne <= eqExcitonNumber);
253
254 //J. M. Quesada (Apr. 08): soft-cutoff switched off by default
255 if (useSCO && go_ahead) {
256 G4double x = (G4double)(ne - eqExcitonNumber)/(G4double)eqExcitonNumber;
257 if( G4UniformRand() < 1.0 - G4Exp(-x*x/0.32) ) { go_ahead = false; }
258 }
259
260 // JMQ: WARNING: CalculateProbability MUST be called prior to Get!!
261 // (O values would be returned otherwise)
262 G4double transProbability =
263 theTransition->CalculateProbability(aFragment);
264 G4double P1 = theTransition->GetTransitionProb1();
265 G4double P2 = theTransition->GetTransitionProb2();
266 G4double P3 = theTransition->GetTransitionProb3();
267 //G4cout<<"#0 P1="<<P1<<" P2="<<P2<<" P3="<<P3<<G4endl;
268
269 //J.M. Quesada (May 2008) Physical criterium (lamdas) PREVAILS over
270 // approximation (critical exciton number)
271 //V.Ivanchenko (May 2011) added check on number of nucleons
272 // to send a fragment to FermiBreakUp
273 // or check on limits of excitation
274 if(!go_ahead || P1 <= P2+P3 || Z < minZ || A < minA ||
275 U <= fLowLimitExc*A || U > A*fHighLimitExc ||
276 aFragment.GetNumberOfExcitons() <= 0) {
277 // G4cout<<"#4 EquilibriumEmission"<<G4endl;
278 PerformEquilibriumEmission(aFragment,Result);
279 return Result;
280 }
281 G4double emissionProbability =
282 theEmission->GetTotalProbability(aFragment);
283 //G4cout<<"#1 TotalEmissionProbability="<<emissionProbability
284 //<<" Nex= " <<aFragment.GetNumberOfExcitons()<<G4endl;
285 //J.M.Quesada (May 08) this has already been done in order to decide
286 // what to do (preeq-eq)
287 // Sum of all probabilities
288 G4double TotalProbability = emissionProbability + transProbability;
289
290 // Select subprocess
291 if (TotalProbability*G4UniformRand() > emissionProbability) {
292 //G4cout<<"#2 Transition"<<G4endl;
293 // It will be transition to state with a new number of excitons
294 isTransition = true;
295 // Perform the transition
296 theTransition->PerformTransition(aFragment);
297 } else {
298 //G4cout<<"#3 Emission"<<G4endl;
299 // It will be fragment emission
300 isTransition = false;
301 Result->push_back(theEmission->PerformEmission(aFragment));
302 }
303 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
304 } while (isTransition); // end of do loop
305
306 // stop if too many iterations
307 if(count >= countmax) {
309 ed << "G4PreCompoundModel loop over " << countmax << " iterations; "
310 << "current G4Fragment: \n" << aFragment;
311 G4Exception("G4PreCompoundModel::DeExcite()","had0034",JustWarning,
312 ed,"");
313 PerformEquilibriumEmission(aFragment, Result);
314 return Result;
315 }
316 } // end of for (;;) loop
317 return Result;
318}
@ JustWarning
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
bool G4bool
Definition G4Types.hh:86
#define G4UniformRand()
Definition Randomize.hh:52
G4double GetExcitationEnergy() const
G4int GetZ_asInt() const
G4int GetNumberOfExcitons() const
G4int GetNumberOfLambdas() const
G4int GetA_asInt() const
G4double GetLevelDensity(G4int Z, G4int A, G4double U)
G4ReactionProduct * PerformEmission(G4Fragment &aFragment)
G4double GetTotalProbability(const G4Fragment &aFragment)
virtual G4double CalculateProbability(const G4Fragment &aFragment)=0
virtual void PerformTransition(G4Fragment &aFragment)=0
int G4lrint(double ad)
Definition templates.hh:134

Referenced by G4LowEGammaNuclearModel::ApplyYourself(), G4LowEIonFragmentation::ApplyYourself(), ApplyYourself(), and G4NeutrinoNucleusModel::RecoilDeexcitation().

◆ DeExciteModelDescription()

void G4PreCompoundModel::DeExciteModelDescription ( std::ostream & outFile) const
finalvirtual

Implements G4VPreCompoundModel.

Definition at line 350 of file G4PreCompoundModel.cc.

351{
352 outFile << "description of precompound model as used with DeExcite()" << "\n";
353}

◆ InitialiseModel()

void G4PreCompoundModel::InitialiseModel ( )
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 101 of file G4PreCompoundModel.cc.

102{
103 if(isInitialised) { return; }
104 isInitialised = true;
105
106 //G4cout << "G4PreCompoundModel::InitialiseModel() started" << G4endl;
107
108 G4DeexPrecoParameters* param = fNuclData->GetParameters();
109
110 fLowLimitExc = param->GetPrecoLowEnergy();
111 fHighLimitExc = param->GetPrecoHighEnergy();
112
113 useSCO = param->UseSoftCutoff();
114
115 minZ = param->GetMinZForPreco();
116 minA = param->GetMinAForPreco();
117
118 theEmission = new G4PreCompoundEmission();
119 if(param->UseHETC()) { theEmission->SetHETCModel(); }
120 theEmission->SetOPTxs(param->GetPrecoModelType());
121
122 if(param->UseGNASH()) { theTransition = new G4GNASHTransitions; }
123 else { theTransition = new G4PreCompoundTransitions(); }
124 theTransition->UseNGB(param->NeverGoBack());
125 theTransition->UseCEMtr(param->UseCEM());
126
127 if(param->PrecoDummy()) { isActive = false; }
128
130}
G4double GetPrecoHighEnergy() const
G4DeexPrecoParameters * GetParameters()

Referenced by BuildPhysicsTable(), and DeExcite().

◆ ModelDescription()

void G4PreCompoundModel::ModelDescription ( std::ostream & outFile) const
finalvirtual

Reimplemented from G4HadronicInteraction.

Definition at line 324 of file G4PreCompoundModel.cc.

325{
326 outFile
327 << "The GEANT4 precompound model is considered as an extension of the\n"
328 << "hadron kinetic model. It gives a possibility to extend the low energy range\n"
329 << "of the hadron kinetic model for nucleon-nucleus inelastic collision and it \n"
330 << "provides a ”smooth” transition from kinetic stage of reaction described by the\n"
331 << "hadron kinetic model to the equilibrium stage of reaction described by the\n"
332 << "equilibrium deexcitation models.\n"
333 << "The initial information for calculation of pre-compound nuclear stage\n"
334 << "consists of the atomic mass number A, charge Z of residual nucleus, its\n"
335 << "four momentum P0 , excitation energy U and number of excitons n, which equals\n"
336 << "the sum of the number of particles p (from them p_Z are charged) and the number of\n"
337 << "holes h.\n"
338 << "At the preequilibrium stage of reaction, we follow the exciton model approach in ref. [1],\n"
339 << "taking into account the competition among all possible nuclear transitions\n"
340 << "with ∆n = +2, −2, 0 (which are defined by their associated transition probabilities) and\n"
341 << "the emission of neutrons, protons, deuterons, thritium and helium nuclei (also defined by\n"
342 << "their associated emission probabilities according to exciton model)\n"
343 << "\n"
344 << "[1] K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 329 (1983)\n"
345 << "\n";
346}

The documentation for this class was generated from the following files: