70 leptonKE(0.0), photonEnergy(0.0), photonQ2(0.0), secID(-1)
78 if ( electroXS ==
nullptr ) {
85 if ( gammaXS ==
nullptr ) {
89 if ( gammaXS ==
nullptr ) {
121 delete theFragmentation;
122 delete theStringDecay;
127 outFile <<
"G4ElectroVDNuclearModel handles the inelastic scattering\n"
128 <<
"of e- and e+ from nuclei using the equivalent photon\n"
129 <<
"approximation in which the incoming lepton generates a\n"
130 <<
"virtual photon at the electromagnetic vertex, and the\n"
131 <<
"virtual photon is converted to a real photon. At low\n"
132 <<
"energies, the photon interacts directly with the nucleus\n"
133 <<
"using the Bertini cascade. At high energies the photon\n"
134 <<
"is converted to a pi0 which interacts using the FTFP\n"
135 <<
"model. The electro- and gamma-nuclear cross sections of\n"
136 <<
"M. Kossov are used to generate the virtual photon spectrum\n";
161 if (photonEnergy < leptonKE) {
165 if (photonEnergy > photonQ2/dM) {
169 if (transferredPhoton) CalculateHadronicVertex(transferredPhoton, targetNucleus);
177G4ElectroVDNuclearModel::CalculateEMVertex(
const G4HadProjectile& aTrack,
191 photon.SetKineticEnergy(photonEnergy - photonQ2/dM);
203 G4double finE = iniE - photonEnergy;
205 G4double iniP = std::sqrt(iniE*iniE-mProj2);
206 G4double finP = std::sqrt(finE*finE-mProj2);
207 G4double cost = (iniE*finE - mProj2 - photonQ2/2.)/iniP/finP;
208 if (cost > 1.) cost= 1.;
209 if (cost < -1.) cost=-1.;
210 G4double sint = std::sqrt(1.-cost*cost);
224 photonEnergy, photonMomentum);
236 if (gammaE < 10*GeV) {
242 G4double piMom = std::sqrt(gammaE*gammaE - piMass*piMass);
CLHEP::Hep3Vector G4ThreeVector
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
static G4CrossSectionDataSetRegistry * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
static const char * Default_Name()
G4double GetEquivalentPhotonQ2(G4double nu)
G4double GetEquivalentPhotonEnergy()
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat)
G4double GetVirtualFactor(G4double nu, G4double Q2)
virtual void ModelDescription(std::ostream &outFile) const
G4ElectroVDNuclearModel()
~G4ElectroVDNuclearModel()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
static const char * Default_Name()
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
std::size_t GetNumberOfSecondaries() const
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void SetCreatorModelID(G4int id)
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static G4Neutron * Neutron()
G4double GetPDGMass() const
static const char * Default_Name()
static G4int GetModelID(const G4int modelIndex)
static G4PionZero * PionZero()
static G4Proton * Proton()
void SetTransport(G4VIntraNuclearTransportModel *const value)
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus) override
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat=nullptr)
void SetDeExcitation(G4VPreCompoundModel *ptr)
void SetFragmentationModel(G4VStringFragmentation *aModel)