Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4WilsonAblationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4WilsonAblationModel.cc
39//
40// Version: 1.0
41// Date: 08/12/2009
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 6 October 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 08 December 2009, P R Truscott, QinetiQ Ltd, UK
59// Ver 1.0
60// Updated as a result of changes in the G4Evaporation classes. These changes
61// affect mostly SelectSecondariesByEvaporation, and now you have variables
62// associated with the evaporation model which can be changed:
63// OPTxs to select the inverse cross-section
64// OPTxs = 0 => Dostrovski's parameterization
65// OPTxs = 1 or 2 => Chatterjee's paramaterization
66// OPTxs = 3 or 4 => Kalbach's parameterization
67// useSICB => use superimposed Coulomb Barrier for inverse cross
68// sections
69// Other problem found with G4Fragment definition using Lorentz vector and
70// **G4ParticleDefinition**. This does not allow A and Z to be defined for the
71// fragment for some reason. Now the fragment is defined more explicitly:
72// G4Fragment *fragment = new G4Fragment(A, Z, lorentzVector);
73// to avoid this quirk. Bug found in SelectSecondariesByDefault: *type is now
74// equated to evapType[i] whereas previously it was equated to fragType[i].
75//
76// 06 August 2015, A. Ribon, CERN
77// Migrated std::exp and std::pow to the faster G4Exp and G4Pow.
78//
79// 09 June 2017, C. Mancini Terracciano, INFN
80// Fixed bug on the initialization of Photon Evaporation model
81//
82// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83////////////////////////////////////////////////////////////////////////////////
84//
85#include <iomanip>
86#include <numeric>
87
90#include "G4SystemOfUnits.hh"
91#include "Randomize.hh"
92#include "G4ParticleTable.hh"
93#include "G4IonTable.hh"
94#include "G4Alpha.hh"
95#include "G4He3.hh"
96#include "G4Triton.hh"
97#include "G4Deuteron.hh"
98#include "G4Proton.hh"
99#include "G4Neutron.hh"
106#include "G4PhotonEvaporation.hh"
107#include "G4LorentzVector.hh"
109
110#include "G4Exp.hh"
111#include "G4Pow.hh"
112
114
115////////////////////////////////////////////////////////////////////////////////
116//
118{
119//
120//
121// Send message to stdout to advise that the G4Abrasion model is being used.
122//
123 PrintWelcomeMessage();
124//
125//
126// Set the default verbose level to 0 - no output.
127//
128 verboseLevel = 0;
129//
130//
131// Set the binding energy per nucleon .... did I mention that this is a crude
132// model for nuclear de-excitation?
133//
134 B = 10.0 * MeV;
135//
136//
137// It is possuble to switch off secondary particle production (other than the
138// final nuclear fragment). The default is on.
139//
140 produceSecondaries = true;
141//
142//
143// Now we need to define the decay modes. We're using the G4Evaporation model
144// to help determine the kinematics of the decay.
145//
146 nFragTypes = 6;
147 fragType[0] = G4Alpha::Alpha();
148 fragType[1] = G4He3::He3();
149 fragType[2] = G4Triton::Triton();
150 fragType[3] = G4Deuteron::Deuteron();
151 fragType[4] = G4Proton::Proton();
152 fragType[5] = G4Neutron::Neutron();
153 for(G4int i=0; i<200; ++i) { fSig[i] = 0.0; }
154//
155//
156// Set verboseLevel default to no output.
157//
158 verboseLevel = 0;
161//
162//
163// Set defaults for evaporation classes. These can be overridden by user
164// "set" methods.
165//
166 OPTxs = 3;
167 useSICB = false;
168 fragmentVector = 0;
169
170 secID = G4PhysicsModelCatalog::GetModelID("model_G4WilsonAblationModel");
171}
172////////////////////////////////////////////////////////////////////////////////
173//
176
177////////////////////////////////////////////////////////////////////////////////
178//
180 (const G4Fragment &theNucleus)
181{
182//
183//
184// Initilise the pointer to the G4FragmentVector used to return the information
185// about the breakup.
186//
187 fragmentVector = new G4FragmentVector;
188 fragmentVector->clear();
189//
190//
191// Get the A, Z and excitation of the nucleus.
192//
193 G4int A = theNucleus.GetA_asInt();
194 G4int Z = theNucleus.GetZ_asInt();
195 G4double ex = theNucleus.GetExcitationEnergy();
196 if (verboseLevel >= 2)
197 {
198 G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
199 <<"oooooooooooooooooooooooooooooooooooooooo"
200 <<G4endl;
201 G4cout.precision(6);
202 G4cout <<"IN G4WilsonAblationModel" <<G4endl;
203 G4cout <<"Initial prefragment A=" <<A
204 <<", Z=" <<Z
205 <<", excitation energy = " <<ex/MeV <<" MeV"
206 <<G4endl;
207 }
208//
209//
210// Check that there is a nucleus to speak of. It's possible there isn't one
211// or its just a proton or neutron. In either case, the excitation energy
212// (from the Lorentz vector) is not used.
213//
214 if (A == 0)
215 {
216 if (verboseLevel >= 2)
217 {
218 G4cout <<"No nucleus to decay" <<G4endl;
219 G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
220 <<"oooooooooooooooooooooooooooooooooooooooo"
221 <<G4endl;
222 }
223 return fragmentVector;
224 }
225 else if (A == 1)
226 {
227 G4LorentzVector lorentzVector = theNucleus.GetMomentum();
228 lorentzVector.setE(lorentzVector.e()-ex+10.0*eV);
229 if (Z == 0)
230 {
231 G4Fragment *fragment = new G4Fragment(lorentzVector,G4Neutron::Neutron());
232 if (fragment != nullptr) { fragment->SetCreatorModelID(secID); }
233 fragmentVector->push_back(fragment);
234 }
235 else
236 {
237 G4Fragment *fragment = new G4Fragment(lorentzVector,G4Proton::Proton());
238 if (fragment != nullptr) { fragment->SetCreatorModelID(secID); }
239 fragmentVector->push_back(fragment);
240 }
241 if (verboseLevel >= 2)
242 {
243 G4cout <<"Final fragment is in fact only a nucleon) :" <<G4endl;
244 G4cout <<(*fragmentVector)[0] <<G4endl;
245 G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
246 <<"oooooooooooooooooooooooooooooooooooooooo"
247 <<G4endl;
248 }
249 return fragmentVector;
250 }
251//
252//
253// Then the number of nucleons ablated (either as nucleons or light nuclear
254// fragments) is based on a simple argument for the binding energy per nucleon.
255//
256 G4int DAabl = (G4int) (ex / B);
257 if (DAabl > A) DAabl = A;
258// The following lines are no longer accurate given we now treat the final fragment
259// if (verboseLevel >= 2)
260// G4cout <<"Number of nucleons ejected = " <<DAabl <<G4endl;
261
262//
263//
264// Determine the nuclear fragment from the ablation process by sampling the
265// Rudstam equation.
266//
267 G4int AF = A - DAabl;
268 G4int ZF = 0;
269
270 if (AF > 0)
271 {
272 G4Pow* g4calc = G4Pow::GetInstance();
273 G4double AFd = (G4double) AF;
274 G4double R = 11.8 / g4calc->powZ(AF, 0.45);
275 G4int minZ = std::max(1, Z - DAabl);
276//
277//
278// Here we define an integral probability distribution based on the Rudstam
279// equation assuming a constant AF.
280//
281 G4int zmax = std::min(199, Z);
282 G4double sum = 0.0;
283 for (ZF=minZ; ZF<=zmax; ++ZF)
284 {
285 sum += G4Exp(-R*g4calc->powA(std::abs(ZF - 0.486*AFd + 3.8E-04*AFd*AFd),1.5));
286 fSig[ZF] = sum;
287 }
288//
289//
290// Now sample that distribution to determine a value for ZF.
291//
292 sum *= G4UniformRand();
293 for (ZF=minZ; ZF<=zmax; ++ZF) {
294 if(sum <= fSig[ZF]) { break; }
295 }
296 }
297 G4int DZabl = Z - ZF;
298//
299//
300// Now determine the nucleons or nuclei which have bee ablated. The preference
301// is for the production of alphas, then other nuclei in order of decreasing
302// binding energy. The energies assigned to the products of the decay are
303// provisional for the moment (the 10eV is just to avoid errors with negative
304// excitation energies due to rounding).
305//
306 G4double totalEpost = 0.0;
307 evapType.clear();
308 for (G4int ift=0; ift<nFragTypes; ift++)
309 {
310 G4ParticleDefinition *type = fragType[ift];
311 G4double n = std::floor((G4double) DAabl / type->GetBaryonNumber() + 1.0E-10);
312 G4double n1 = 1.0E+10;
313 if (fragType[ift]->GetPDGCharge() > 0.0)
314 n1 = std::floor((G4double) DZabl / type->GetPDGCharge() + 1.0E-10);
315 if (n > n1) n = n1;
316 if (n > 0.0)
317 {
318 G4double mass = type->GetPDGMass();
319 for (G4int j=0; j<(G4int) n; j++)
320 {
321 totalEpost += mass;
322 evapType.push_back(type);
323 }
324 DAabl -= (G4int) (n * type->GetBaryonNumber() + 1.0E-10);
325 DZabl -= (G4int) (n * type->GetPDGCharge() + 1.0E-10);
326 }
327 }
328//
329//
330// Determine the properties of the final nuclear fragment. Note that if
331// the final fragment is predicted to have a nucleon number of zero, then
332// really it's the particle last in the vector evapType which becomes the
333// final fragment. Therefore delete this from the vector if this is the
334// case.
335//
336 G4double massFinalFrag = 0.0;
337 if (AF > 0)
339 GetIonMass(ZF,AF);
340 else
341 {
342 G4ParticleDefinition *type = evapType[evapType.size()-1];
343 AF = type->GetBaryonNumber();
344 ZF = (G4int) (type->GetPDGCharge() + 1.0E-10);
345 evapType.erase(evapType.end()-1);
346 }
347 totalEpost += massFinalFrag;
348//
349//
350// Provide verbose output on the nuclear fragment if requested.
351//
352 if (verboseLevel >= 2)
353 {
354 G4cout <<"Final fragment A=" <<AF
355 <<", Z=" <<ZF
356 <<G4endl;
357 for (G4int ift=0; ift<nFragTypes; ift++)
358 {
359 G4ParticleDefinition *type = fragType[ift];
360 G4long n = std::count(evapType.cbegin(),evapType.cend(),type);
361 if (n > 0)
362 G4cout <<"Particle type: " <<std::setw(10) <<type->GetParticleName()
363 <<", number of particles emitted = " <<n <<G4endl;
364 }
365 }
366//
367// Add the total energy from the fragment. Note that the fragment is assumed
368// to be de-excited and does not undergo photo-evaporation .... I did mention
369// this is a bit of a crude model?
370//
371 G4double massPreFrag = theNucleus.GetGroundStateMass();
372 G4double totalEpre = massPreFrag + ex;
373 G4double excess = totalEpre - totalEpost;
374// G4Fragment *resultNucleus(theNucleus);
375 G4Fragment *resultNucleus = new G4Fragment(A, Z, theNucleus.GetMomentum());
376 G4ThreeVector boost(0.0,0.0,0.0);
377 std::size_t nEvap = 0;
378 if (produceSecondaries && evapType.size()>0)
379 {
380 if (excess > 0.0)
381 {
382 SelectSecondariesByEvaporation (resultNucleus);
383 nEvap = fragmentVector->size();
384 boost = resultNucleus->GetMomentum().findBoostToCM();
385 if (evapType.size() > 0)
386 SelectSecondariesByDefault (boost);
387 }
388 else
389 SelectSecondariesByDefault(G4ThreeVector(0.0,0.0,0.0));
390 }
391
392 if (AF > 0)
393 {
395 GetIonMass(ZF,AF);
396 G4double e = mass + 10.0*eV;
397 G4double p = std::sqrt(e*e-mass*mass);
398 G4ThreeVector direction(0.0,0.0,1.0);
399 G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e);
400 lorentzVector.boost(-boost);
401 G4Fragment* frag = new G4Fragment(AF, ZF, lorentzVector);
402 if (frag != nullptr) { frag->SetCreatorModelID(secID); }
403 fragmentVector->push_back(frag);
404 }
405 delete resultNucleus;
406//
407//
408// Provide verbose output on the ablation products if requested.
409//
410 if (verboseLevel >= 2)
411 {
412 if (nEvap > 0)
413 {
414 G4cout <<"----------------------" <<G4endl;
415 G4cout <<"Evaporated particles :" <<G4endl;
416 G4cout <<"----------------------" <<G4endl;
417 }
418 std::size_t ie = 0;
419 for (auto iter = fragmentVector->cbegin();
420 iter != fragmentVector->cend(); ++iter)
421 {
422 if (ie == nEvap)
423 {
424// G4cout <<*iter <<G4endl;
425 G4cout <<"---------------------------------" <<G4endl;
426 G4cout <<"Particles from default emission :" <<G4endl;
427 G4cout <<"---------------------------------" <<G4endl;
428 }
429 G4cout <<*iter <<G4endl;
430 }
431 G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
432 <<"oooooooooooooooooooooooooooooooooooooooo"
433 <<G4endl;
434 }
435
436 return fragmentVector;
437}
438////////////////////////////////////////////////////////////////////////////////
439//
440void G4WilsonAblationModel::SelectSecondariesByEvaporation
441 (G4Fragment *intermediateNucleus)
442{
443 G4Fragment theResidualNucleus = *intermediateNucleus;
444 G4bool evaporate = true;
445 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
446 while (evaporate && evapType.size() != 0)
447 {
448//
449//
450// Here's the cheaky bit. We're hijacking the G4Evaporation model, in order to
451// more accurately sample to kinematics, but the species of the nuclear
452// fragments will be the ones of our choosing as above.
453//
454 std::vector <G4VEvaporationChannel*> theChannels1;
455 theChannels1.clear();
456 std::vector <G4VEvaporationChannel*>::iterator i;
457 VectorOfFragmentTypes::iterator iter;
458 std::vector <VectorOfFragmentTypes::iterator> iters;
459 iters.clear();
460 iter = std::find(evapType.begin(), evapType.end(), G4Alpha::Alpha());
461 if (iter != evapType.end())
462 {
463 theChannels1.push_back(new G4AlphaEvaporationChannel);
464 i = theChannels1.end() - 1;
465 (*i)->SetOPTxs(OPTxs);
466 (*i)->UseSICB(useSICB);
467// (*i)->Initialize(theResidualNucleus);
468 iters.push_back(iter);
469 }
470 iter = std::find(evapType.begin(), evapType.end(), G4He3::He3());
471 if (iter != evapType.end())
472 {
473 theChannels1.push_back(new G4He3EvaporationChannel);
474 i = theChannels1.end() - 1;
475 (*i)->SetOPTxs(OPTxs);
476 (*i)->UseSICB(useSICB);
477// (*i)->Initialize(theResidualNucleus);
478 iters.push_back(iter);
479 }
480 iter = std::find(evapType.begin(), evapType.end(), G4Triton::Triton());
481 if (iter != evapType.end())
482 {
483 theChannels1.push_back(new G4TritonEvaporationChannel);
484 i = theChannels1.end() - 1;
485 (*i)->SetOPTxs(OPTxs);
486 (*i)->UseSICB(useSICB);
487// (*i)->Initialize(theResidualNucleus);
488 iters.push_back(iter);
489 }
490 iter = std::find(evapType.begin(), evapType.end(), G4Deuteron::Deuteron());
491 if (iter != evapType.end())
492 {
493 theChannels1.push_back(new G4DeuteronEvaporationChannel);
494 i = theChannels1.end() - 1;
495 (*i)->SetOPTxs(OPTxs);
496 (*i)->UseSICB(useSICB);
497// (*i)->Initialize(theResidualNucleus);
498 iters.push_back(iter);
499 }
500 iter = std::find(evapType.begin(), evapType.end(), G4Proton::Proton());
501 if (iter != evapType.end())
502 {
503 theChannels1.push_back(new G4ProtonEvaporationChannel);
504 i = theChannels1.end() - 1;
505 (*i)->SetOPTxs(OPTxs);
506 (*i)->UseSICB(useSICB);
507// (*i)->Initialize(theResidualNucleus);
508 iters.push_back(iter);
509 }
510 iter = std::find(evapType.begin(), evapType.end(), G4Neutron::Neutron());
511 if (iter != evapType.end())
512 {
513 theChannels1.push_back(new G4NeutronEvaporationChannel);
514 i = theChannels1.end() - 1;
515 (*i)->SetOPTxs(OPTxs);
516 (*i)->UseSICB(useSICB);
517// (*i)->Initialize(theResidualNucleus);
518 iters.push_back(iter);
519 }
520 std::size_t nChannels = theChannels1.size();
521
522 G4double totalProb = 0.0;
523 G4int ich = 0;
524 G4double probEvapType[6] = {0.0};
525 for (auto iterEv=theChannels1.cbegin();
526 iterEv!=theChannels1.cend(); ++iterEv) {
527 totalProb += (*iterEv)->GetEmissionProbability(intermediateNucleus);
528 probEvapType[ich] = totalProb;
529 ++ich;
530 }
531 if (totalProb > 0.0) {
532//
533//
534// The emission probability for at least one of the evaporation channels is
535// positive, therefore work out which one should be selected and decay
536// the nucleus.
537//
538 G4double xi = totalProb*G4UniformRand();
539 std::size_t ii = 0;
540 for (ii=0; ii<nChannels; ++ii)
541 {
542 if (xi < probEvapType[ii]) { break; }
543 }
544 if (ii >= nChannels) { ii = nChannels - 1; }
545 G4FragmentVector *evaporationResult = theChannels1[ii]->
546 BreakUpFragment(intermediateNucleus);
547 if ((*evaporationResult)[0] != nullptr)
548 {
549 (*evaporationResult)[0]->SetCreatorModelID(secID);
550 }
551 fragmentVector->push_back((*evaporationResult)[0]);
552 intermediateNucleus = (*evaporationResult)[1];
553 delete evaporationResult;
554 }
555 else
556 {
557//
558//
559// Probability for further evaporation is nil so have to escape from this
560// routine and set the energies of the secondaries to 10eV.
561//
562 evaporate = false;
563 }
564 }
565
566 return;
567}
568////////////////////////////////////////////////////////////////////////////////
569//
570void G4WilsonAblationModel::SelectSecondariesByDefault (G4ThreeVector boost)
571{
572 for (std::size_t i=0; i<evapType.size(); ++i)
573 {
574 G4ParticleDefinition *type = evapType[i];
575 G4double mass = type->GetPDGMass();
576 G4double e = mass + 10.0*eV;
577 G4double p = std::sqrt(e*e-mass*mass);
578 G4double costheta = 2.0*G4UniformRand() - 1.0;
579 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
580 G4double phi = twopi * G4UniformRand() * rad;
581 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
582 G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e);
583 lorentzVector.boost(-boost);
584// Possibility that the following line is not correctly carrying over A and Z
585// from particle definition. Force values. PRT 03/12/2009.
586// G4Fragment *fragment =
587// new G4Fragment(lorentzVector, type);
588 G4int A = type->GetBaryonNumber();
589 G4int Z = (G4int) (type->GetPDGCharge() + 1.0E-10);
590 G4Fragment *fragment =
591 new G4Fragment(A, Z, lorentzVector);
592 if (fragment != nullptr) { fragment->SetCreatorModelID(secID); }
593 fragmentVector->push_back(fragment);
594 }
595}
596////////////////////////////////////////////////////////////////////////////////
597//
598void G4WilsonAblationModel::PrintWelcomeMessage ()
599{
600 G4cout <<G4endl;
601 G4cout <<" *****************************************************************"
602 <<G4endl;
603 G4cout <<" Nuclear ablation model for nuclear-nuclear interactions activated"
604 <<G4endl;
605 G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
606 <<G4endl;
607 G4cout <<" !!! WARNING: This model is not well validation and should not be used for accurate simulation !!!"
608 <<G4endl;
609 G4cout <<" *****************************************************************"
610 <<G4endl;
611 G4cout << G4endl;
612
613 return;
614}
615////////////////////////////////////////////////////////////////////////////////
616//
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
std::vector< G4Fragment * > G4FragmentVector
Definition G4Fragment.hh:65
CLHEP::HepLorentzVector G4LorentzVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
long G4long
Definition G4Types.hh:87
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
HepLorentzVector & boost(double, double, double)
Hep3Vector findBoostToCM() const
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
static G4Deuteron * Deuteron()
Definition G4Deuteron.cc:90
G4double GetGroundStateMass() const
G4double GetExcitationEnergy() const
const G4LorentzVector & GetMomentum() const
void SetCreatorModelID(G4int value)
G4int GetZ_asInt() const
G4int GetA_asInt() const
static G4He3 * He3()
Definition G4He3.cc:90
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
const G4String & GetParticleName() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4int GetModelID(const G4int modelIndex)
Definition G4Pow.hh:49
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition G4Pow.hh:225
G4double powA(G4double A, G4double y) const
Definition G4Pow.hh:230
static G4Proton * Proton()
Definition G4Proton.cc:90
static G4Triton * Triton()
Definition G4Triton.cc:90
virtual std::vector< G4VEvaporationChannel * > * GetChannel()=0
G4VEvaporationFactory * theChannelFactory
std::vector< G4VEvaporationChannel * > * theChannels
G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)