Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GenericTrap Class Reference

#include <G4GenericTrap.hh>

+ Inheritance diagram for G4GenericTrap:

Public Member Functions

 G4GenericTrap (const G4String &name, G4double halfZ, const std::vector< G4TwoVector > &vertices)
 
 G4GenericTrap (__void__ &)
 
 G4GenericTrap (const G4GenericTrap &rhs)
 
G4GenericTrapoperator= (const G4GenericTrap &rhs)
 
 ~G4GenericTrap () override
 
G4double GetZHalfLength () const
 
G4int GetNofVertices () const
 
G4TwoVector GetVertex (G4int index) const
 
const std::vector< G4TwoVector > & GetVertices () const
 
G4double GetTwistAngle (G4int index) const
 
G4bool IsTwisted () const
 
G4int GetVisSubdivisions () const
 
void SetVisSubdivisions (G4int subdiv)
 
EInside Inside (const G4ThreeVector &p) const override
 
G4ThreeVector SurfaceNormal (const G4ThreeVector &p) const override
 
G4double DistanceToIn (const G4ThreeVector &p, const G4ThreeVector &v) const override
 
G4double DistanceToIn (const G4ThreeVector &p) const override
 
G4double DistanceToOut (const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const override
 
G4double DistanceToOut (const G4ThreeVector &p) const override
 
void BoundingLimits (G4ThreeVector &pMin, G4ThreeVector &pMax) const override
 
G4bool CalculateExtent (const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const override
 
G4GeometryType GetEntityType () const override
 
G4bool IsFaceted () const override
 
G4VSolidClone () const override
 
std::ostream & StreamInfo (std::ostream &os) const override
 
G4ThreeVector GetPointOnSurface () const override
 
G4double GetCubicVolume () override
 
G4double GetSurfaceArea () override
 
void DescribeYourselfTo (G4VGraphicsScene &scene) const override
 
G4VisExtent GetExtent () const override
 
G4PolyhedronCreatePolyhedron () const override
 
G4PolyhedronGetPolyhedron () const override
 
- Public Member Functions inherited from G4VSolid
 G4VSolid (const G4String &name)
 
virtual ~G4VSolid ()
 
G4bool operator== (const G4VSolid &s) const
 
G4String GetName () const
 
void SetName (const G4String &name)
 
G4double GetTolerance () const
 
virtual void ComputeDimensions (G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
 
virtual G4int GetNumOfConstituents () const
 
void DumpInfo () const
 
virtual const G4VSolidGetConstituentSolid (G4int no) const
 
virtual G4VSolidGetConstituentSolid (G4int no)
 
virtual const G4DisplacedSolidGetDisplacedSolidPtr () const
 
virtual G4DisplacedSolidGetDisplacedSolidPtr ()
 
 G4VSolid (__void__ &)
 
 G4VSolid (const G4VSolid &rhs)
 
G4VSolidoperator= (const G4VSolid &rhs)
 
G4double EstimateCubicVolume (G4int nStat, G4double epsilon) const
 
G4double EstimateSurfaceArea (G4int nStat, G4double ell) const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VSolid
void CalculateClippedPolygonExtent (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipCrossSection (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipBetweenSections (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipPolygon (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis) const
 
- Protected Attributes inherited from G4VSolid
G4double kCarTolerance
 

Detailed Description

Definition at line 80 of file G4GenericTrap.hh.

Constructor & Destructor Documentation

◆ G4GenericTrap() [1/3]

G4GenericTrap::G4GenericTrap ( const G4String & name,
G4double halfZ,
const std::vector< G4TwoVector > & vertices )

Definition at line 66 of file G4GenericTrap.cc.

68 : G4VSolid(name)
69{
70 halfTolerance = 0.5*kCarTolerance;
71 CheckParameters(halfZ, vertices);
72 ComputeLateralSurfaces();
73 ComputeBoundingBox();
74 ComputeScratchLength();
75}
G4VSolid(const G4String &name)
Definition G4VSolid.cc:57
G4double kCarTolerance
Definition G4VSolid.hh:306

Referenced by Clone(), G4GenericTrap(), and operator=().

◆ G4GenericTrap() [2/3]

G4GenericTrap::G4GenericTrap ( __void__ & a)

Definition at line 81 of file G4GenericTrap.cc.

82 : G4VSolid(a)
83{
84}

◆ G4GenericTrap() [3/3]

G4GenericTrap::G4GenericTrap ( const G4GenericTrap & rhs)

Definition at line 98 of file G4GenericTrap.cc.

99 : G4VSolid(rhs),
100 halfTolerance(rhs.halfTolerance), fScratch(rhs.fScratch),
101 fDz(rhs.fDz), fVertices(rhs.fVertices), fIsTwisted(rhs.fIsTwisted),
102 fMinBBox(rhs.fMinBBox), fMaxBBox(rhs.fMaxBBox),
103 fVisSubdivisions(rhs.fVisSubdivisions),
104 fSurfaceArea(rhs.fSurfaceArea), fCubicVolume(rhs.fCubicVolume)
105{
106 for (auto i = 0; i < 5; ++i) { fTwist[i] = rhs.fTwist[i]; }
107 for (auto i = 0; i < 4; ++i) { fDelta[i] = rhs.fDelta[i]; }
108 for (auto i = 0; i < 8; ++i) { fPlane[i] = rhs.fPlane[i]; }
109 for (auto i = 0; i < 4; ++i) { fSurf[i] = rhs.fSurf[i]; }
110 for (auto i = 0; i < 4; ++i) { fArea[i] = rhs.fArea[i]; }
111}

◆ ~G4GenericTrap()

G4GenericTrap::~G4GenericTrap ( )
override

Definition at line 90 of file G4GenericTrap.cc.

91{
92}

Member Function Documentation

◆ BoundingLimits()

void G4GenericTrap::BoundingLimits ( G4ThreeVector & pMin,
G4ThreeVector & pMax ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 872 of file G4GenericTrap.cc.

874{
875 pMin = fMinBBox;
876 pMax = fMaxBBox;
877}

Referenced by CalculateExtent().

◆ CalculateExtent()

G4bool G4GenericTrap::CalculateExtent ( const EAxis pAxis,
const G4VoxelLimits & pVoxelLimit,
const G4AffineTransform & pTransform,
G4double & pmin,
G4double & pmax ) const
overridevirtual

Implements G4VSolid.

Definition at line 884 of file G4GenericTrap.cc.

888{
889 G4ThreeVector bmin, bmax;
890 G4bool exist;
891
892 // Check bounding box (bbox)
893 //
894 BoundingLimits(bmin,bmax);
895 G4BoundingEnvelope bbox(bmin,bmax);
896#ifdef G4BBOX_EXTENT
897 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
898#endif
899 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
900 {
901 return exist = pMin < pMax;
902 }
903
904 // Set bounding envelope (benv) and calculate extent
905 //
906 // To build the bounding envelope with plane faces, each lateral face of
907 // the trapezoid is subdivided in two triangles. Subdivision is done by
908 // duplication of vertices in the bases in a way that the envelope be
909 // a convex polyhedron (some faces of the envelope can be degenerated)
910 //
912 G4ThreeVectorList baseA(8), baseB(8);
913 for (G4int i = 0; i < 4; ++i)
914 {
915 G4TwoVector va = GetVertex(i);
916 G4TwoVector vb = GetVertex(i+4);
917 baseA[2*i].set(va.x(), va.y(),-dz);
918 baseB[2*i].set(vb.x(), vb.y(), dz);
919 }
920 for (G4int i = 0; i < 4; ++i)
921 {
922 G4int k1 = 2*i, k2 = (2*i + 2)%8;
923 G4double ax = (baseA[k2].x() - baseA[k1].x());
924 G4double ay = (baseA[k2].y() - baseA[k1].y());
925 G4double bx = (baseB[k2].x() - baseB[k1].x());
926 G4double by = (baseB[k2].y() - baseB[k1].y());
927 G4double znorm = ax*by - ay*bx;
928 baseA[k1+1] = (znorm < 0.0) ? baseA[k2] : baseA[k1];
929 baseB[k1+1] = (znorm < 0.0) ? baseB[k1] : baseB[k2];
930 }
931
932 std::vector<const G4ThreeVectorList *> polygons(2);
933 polygons[0] = &baseA;
934 polygons[1] = &baseB;
935
936 G4BoundingEnvelope benv(bmin, bmax, polygons);
937 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
938 return exist;
939}
std::vector< G4ThreeVector > G4ThreeVectorList
CLHEP::Hep3Vector G4ThreeVector
CLHEP::Hep2Vector G4TwoVector
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
double x() const
double y() const
G4double GetZHalfLength() const
G4TwoVector GetVertex(G4int index) const
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const override

◆ Clone()

G4VSolid * G4GenericTrap::Clone ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 963 of file G4GenericTrap.cc.

964{
965 return new G4GenericTrap(*this);
966}
G4GenericTrap(const G4String &name, G4double halfZ, const std::vector< G4TwoVector > &vertices)

◆ CreatePolyhedron()

G4Polyhedron * G4GenericTrap::CreatePolyhedron ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 1520 of file G4GenericTrap.cc.

1521{
1522 // Approximation of Twisted Side
1523 // Construct extra Points, if Twisted Side
1524 //
1525 G4Polyhedron* polyhedron;
1526 G4int nVertices, nFacets;
1527
1528 G4int subdivisions = 0;
1529 if (fIsTwisted)
1530 {
1531 if (GetVisSubdivisions() != 0)
1532 {
1533 subdivisions = GetVisSubdivisions();
1534 }
1535 else
1536 {
1537 // Estimation of Number of Subdivisions for smooth visualisation
1538 //
1539 G4double maxTwist = 0.;
1540 for(G4int i = 0; i < 4; ++i)
1541 {
1542 if (GetTwistAngle(i) > maxTwist) { maxTwist = GetTwistAngle(i); }
1543 }
1544
1545 // Computes bounding vectors for the shape
1546 //
1547 G4double Dx, Dy;
1548 Dx = 0.5*(fMaxBBox.x() - fMinBBox.y());
1549 Dy = 0.5*(fMaxBBox.y() - fMinBBox.y());
1550 if (Dy > Dx) { Dx = Dy; }
1551
1552 subdivisions = 8*G4int(maxTwist/(Dx*Dx*Dx)*fDz);
1553 if (subdivisions < 4) { subdivisions = 4; }
1554 if (subdivisions > 30) { subdivisions = 30; }
1555 }
1556 }
1557 G4int sub4 = 4*subdivisions;
1558 nVertices = 8 + subdivisions*4;
1559 nFacets = 6 + subdivisions*4;
1560 G4double cf = 1./(subdivisions + 1);
1561 polyhedron = new G4Polyhedron(nVertices, nFacets);
1562
1563 // Set vertices
1564 //
1565 G4int icur = 0;
1566 for (G4int i = 0; i < 4; ++i)
1567 {
1568 G4ThreeVector v(fVertices[i].x(),fVertices[i].y(),-fDz);
1569 polyhedron->SetVertex(++icur, v);
1570 }
1571 for (G4int i = 0; i < subdivisions; ++i)
1572 {
1573 for (G4int j = 0; j < 4; ++j)
1574 {
1575 G4TwoVector u = fVertices[j]+cf*(i+1)*(fVertices[j+4]-fVertices[j]);
1576 G4ThreeVector v(u.x(),u.y(),-fDz+cf*2*fDz*(i+1));
1577 polyhedron->SetVertex(++icur, v);
1578 }
1579 }
1580 for (G4int i = 4; i < 8; ++i)
1581 {
1582 G4ThreeVector v(fVertices[i].x(),fVertices[i].y(),fDz);
1583 polyhedron->SetVertex(++icur, v);
1584 }
1585
1586 // Set facets
1587 //
1588 icur = 0;
1589 polyhedron->SetFacet(++icur, 1, 4, 3, 2); // Z-plane
1590 for (G4int i = 0; i < subdivisions + 1; ++i)
1591 {
1592 G4int is = i*4;
1593 polyhedron->SetFacet(++icur, 5+is, 8+is, 4+is, 1+is);
1594 polyhedron->SetFacet(++icur, 8+is, 7+is, 3+is, 4+is);
1595 polyhedron->SetFacet(++icur, 7+is, 6+is, 2+is, 3+is);
1596 polyhedron->SetFacet(++icur, 6+is, 5+is, 1+is, 2+is);
1597 }
1598 polyhedron->SetFacet(++icur, 5+sub4, 6+sub4, 7+sub4, 8+sub4); // Z-plane
1599
1600 polyhedron->SetReferences();
1601 polyhedron->InvertFacets();
1602
1603 return polyhedron;
1604}
G4double GetTwistAngle(G4int index) const
G4int GetVisSubdivisions() const
void SetVertex(G4int index, const G4Point3D &v)
void SetFacet(G4int index, G4int iv1, G4int iv2, G4int iv3, G4int iv4=0)

Referenced by GetPolyhedron().

◆ DescribeYourselfTo()

void G4GenericTrap::DescribeYourselfTo ( G4VGraphicsScene & scene) const
overridevirtual

Implements G4VSolid.

Definition at line 1502 of file G4GenericTrap.cc.

1503{
1504 scene.AddSolid(*this);
1505}
virtual void AddSolid(const G4Box &)=0

◆ DistanceToIn() [1/2]

G4double G4GenericTrap::DistanceToIn ( const G4ThreeVector & p) const
overridevirtual

Implements G4VSolid.

Definition at line 562 of file G4GenericTrap.cc.

563{
564 G4double px = p.x(), py = p.y(), pz = p.z();
565
566 // intersect edges by z = pz plane
567 G4TwoVector pp[4];
568 G4double z = (pz + fDz);
569 for (auto i = 0; i < 4; ++i) { pp[i] = fVertices[i] + fDelta[i]*z; }
570
571 // estimate distance to the solid
572 G4double dist = std::abs(pz) - fDz;
573 for (auto i = 0; i < 4; ++i)
574 {
575 if (fTwist[i] == 0.)
576 {
577 G4double dd = fSurf[i].D*px + fSurf[i].E*py + fSurf[i].F*pz + fSurf[i].G;
578 dist = std::max(dd, dist);
579 }
580 else
581 {
582 // comptute distance to the wedge (two planes) in front of the surface
583 auto j = (i + 1)%4;
584 G4double cx = pp[j].x() - pp[i].x();
585 G4double cy = pp[j].y() - pp[i].y();
586 G4double d = (pp[i].x() - px)*cy + (py - pp[i].y())*cx;
587 G4ThreeVector na(-cy, cx, fDelta[i].x()*cy - fDelta[i].y()*cx);
588 G4ThreeVector nb(-cy, cx, fDelta[j].x()*cy - fDelta[j].y()*cx);
589 G4double amag2 = na.mag2();
590 G4double bmag2 = nb.mag2();
591 G4double distab = (amag2 > bmag2) ? d/std::sqrt(amag2) : d/std::sqrt(bmag2); // d > 0
592 dist = std::max(distab, dist);
593 }
594 }
595 return (dist > 0.) ? dist : 0.; // return safety distance
596}
double z() const
double x() const
double y() const

◆ DistanceToIn() [2/2]

G4double G4GenericTrap::DistanceToIn ( const G4ThreeVector & p,
const G4ThreeVector & v ) const
overridevirtual

Implements G4VSolid.

Definition at line 307 of file G4GenericTrap.cc.

309{
310 G4double px = p.x(), py = p.y(), pz = p.z();
311 G4double vx = v.x(), vy = v.y(), vz = v.z();
312
313 // Find intersections with the bounding polyhedron
314 //
315 if (std::abs(pz) - fDz >= -halfTolerance && pz*vz >= 0) { return kInfinity; }
316 G4double invz = (vz == 0) ? kInfinity : -1./vz;
317 G4double dz = std::copysign(fDz,invz);
318 G4double xin = (pz - dz)*invz;
319 G4double xout = (pz + dz)*invz;
320
321 // Check plane faces
322 for (auto k = 0; k < 4; ++k)
323 {
324 if (fTwist[k] != 0) continue; // skip twisted faces
325 const G4GenericTrapPlane& surf = fPlane[2*k];
326 G4double cosa = surf.A*vx + surf.B*vy + surf.C*vz;
327 G4double dist = surf.A*px + surf.B*py + surf.C*pz + surf.D;
328 if (dist >= -halfTolerance)
329 {
330 if (cosa >= 0.) { return kInfinity; } // point flies away
331 G4double tmp = -dist/cosa;
332 xin = std::max(tmp, xin);
333 }
334 else
335 {
336 if (cosa > 0) { xout = std::min(-dist/cosa, xout); }
337 if (cosa < 0) { xin = std::max(-dist/cosa, xin); }
338 }
339 }
340
341 // Check planes around twisted faces, each twisted face is bounded by two planes
342 G4double tin = xin;
343 G4double tout = xout;
344 for (auto i = 0; i < 4; ++i)
345 {
346 if (fTwist[i] == 0) continue; // skip plane faces
347
348 // check intersection with 1st bounding plane
349 const G4GenericTrapPlane& surf1 = fPlane[2*i];
350 G4double cosa = surf1.A*vx + surf1.B*vy + surf1.C*vz;
351 G4double dist = surf1.A*px + surf1.B*py + surf1.C*pz + surf1.D;
352 if (dist >= -halfTolerance)
353 {
354 if (cosa >= 0.) { return kInfinity; } // point flies away
355 G4double tmp = -dist/cosa;
356 tin = std::max(tmp, tin);
357 }
358 else
359 {
360 if (cosa > 0) { tout = std::min(-dist/cosa, tout); }
361 if (cosa < 0) { tin = std::max(-dist/cosa, tin); }
362 }
363
364 // check intersection with 2nd bounding plane
365 const G4GenericTrapPlane& surf2 = fPlane[2*i + 1];
366 cosa = surf2.A*vx + surf2.B*vy + surf2.C*vz;
367 dist = surf2.A*px + surf2.B*py + surf2.C*pz + surf2.D;
368 if (dist >= -halfTolerance)
369 {
370 if (cosa >= 0.) { return kInfinity; } // point flies away
371 G4double tmp = -dist/cosa;
372 tin = std::max(tmp, tin);
373 }
374 else
375 {
376 if (cosa > 0) { tout = std::min(-dist/cosa, tout); }
377 if (cosa < 0) { tin = std::max(-dist/cosa, tin); }
378 }
379 }
380 if (tout - tin <= halfTolerance) { return kInfinity; } // touch or no hit
381
382 // if point is outside of the bounding box
383 // then move it to the surface of the bounding polyhedron
384 G4double t0 = 0., x0 = px, y0 = py, z0 = pz;
385 if (x0 < fMinBBox.x() - halfTolerance ||
386 y0 < fMinBBox.y() - halfTolerance ||
387 z0 < fMinBBox.z() - halfTolerance ||
388 x0 > fMaxBBox.x() + halfTolerance ||
389 y0 > fMaxBBox.y() + halfTolerance ||
390 z0 > fMaxBBox.z() + halfTolerance)
391 {
392 t0 = tin;
393 x0 += vx*t0;
394 y0 += vy*t0;
395 z0 += vz*t0;
396 }
397
398 // Check intersections with twisted faces
399 //
400 G4double ttin[2] = { DBL_MAX, DBL_MAX };
401 G4double ttout[2] = { tout, tout };
402
403 if (tin - xin < halfTolerance) ttin[0] = xin;
404 if (xout - tout < halfTolerance) ttout[0] = xout;
405 G4double tminimal = tin - halfTolerance;
406 G4double tmaximal = tout + halfTolerance;
407
408 constexpr G4double EPSILON = 1000.*DBL_EPSILON;
409 for (auto i = 0; i < 4; ++i)
410 {
411 if (fTwist[i] == 0) continue; // skip plane faces
412
413 // twisted face, solve quadratic equation
414 G4double ABC = fSurf[i].A*vx + fSurf[i].B*vy + fSurf[i].C*vz;
415 G4double ABCF = fSurf[i].A*x0 + fSurf[i].B*y0 + fSurf[i].C*z0 + fSurf[i].F;
416 G4double A = ABC*vz;
417 G4double B = 0.5*(fSurf[i].D*vx + fSurf[i].E*vy + ABCF*vz + ABC*z0);
418 G4double C = fSurf[i].D*x0 + fSurf[i].E*y0 + ABCF*z0 + fSurf[i].G;
419 if (std::abs(A) <= EPSILON)
420 {
421 // case 1: track is parallel to the surface
422 if (std::abs(B) <= EPSILON)
423 {
424 // check position of the track relative to the surface,
425 // for the reason of precision it's better to use (x0,y0,z0) instead of (px,py,pz)
426 auto j = (i + 1)%4;
427 G4double z = (z0 + fDz);
428 G4TwoVector a = fVertices[i] + fDelta[i]*z;
429 G4TwoVector b = fVertices[j] + fDelta[j]*z;
430 G4double dx = b.x() - a.x();
431 G4double dy = b.y() - a.y();
432 G4double leng = std::sqrt(dx*dx + dy*dy);
433 G4double dist = dx*(y0 - a.y()) - dy*(x0 - a.x());
434 if (dist >= -halfTolerance*leng) { return kInfinity; }
435 continue;
436 }
437
438 // case 2: single root
439 G4double tmp = t0 - 0.5*C/B;
440 // compute normal at the intersection point and check direction
441 G4double x = px + vx*tmp;
442 G4double y = py + vy*tmp;
443 G4double z = pz + vz*tmp;
444 const G4GenericTrapSurface& surf = fSurf[i];
445 G4double nx = surf.A*z + surf.D;
446 G4double ny = surf.B*z + surf.E;
447 G4double nz = surf.A*x + surf.B*y + 2.*surf.C*z + surf.F;
448
449 if (nx*vx + ny*vy + nz*vz >= 0.) // point is flying to outside
450 {
451 auto k = (i == 3) ? 0 : i + 1;
452 G4double tz = (pz + fDz);
453 G4TwoVector a = fVertices[i] + fDelta[i]*tz;
454 G4TwoVector b = fVertices[k] + fDelta[k]*tz;
455 G4double dx = b.x() - a.x();
456 G4double dy = b.y() - a.y();
457 G4double leng = std::sqrt(dx*dx + dy*dy);
458 G4double dist = dx*(py - a.y()) - dy*(px - a.x());
459 if (dist >= -halfTolerance*leng) { return kInfinity; } // point is flies away
460
461 if (tmp < tminimal || tmp > tmaximal) continue;
462 if (std::abs(tmp - ttout[0]) < halfTolerance) continue;
463 if (tmp < ttout[0])
464 {
465 ttout[1] = ttout[0];
466 ttout[0] = tmp;
467 }
468 else { ttout[1] = std::min(tmp, ttout[1]); }
469 }
470 else // point is flying to inside
471 {
472 if (tmp < tminimal || tmp > tmaximal) continue;
473 if (std::abs(tmp - ttin[0]) < halfTolerance) continue;
474 if (tmp < ttin[0])
475 {
476 ttin[1] = ttin[0];
477 ttin[0] = tmp;
478 }
479 else { ttin[1] = std::min(tmp, ttin[1]); }
480 }
481 continue;
482 }
483
484 // case 3: scratch or no intersection
485 G4double D = B*B - A*C;
486 if (D < 0.25*fScratch*fScratch*A*A)
487 {
488 if (A > 0) return kInfinity;
489 continue;
490 }
491
492 // case 4: two intersection points
493 G4double tmp = -B - std::copysign(std::sqrt(D), B);
494 G4double t1 = tmp/A + t0;
495 G4double t2 = C/tmp + t0;
496 G4double tsurfin = std::min(t1, t2);
497 G4double tsurfout = std::max(t1, t2);
498 if (A < 0) std::swap(tsurfin, tsurfout);
499
500 if (tsurfin >= tminimal && tsurfin <= tmaximal)
501 {
502 if (std::abs(tsurfin - ttin[0]) >= halfTolerance)
503 {
504 if (tsurfin < ttin[0])
505 {
506 ttin[1] = ttin[0];
507 ttin[0] = tsurfin;
508 }
509 else { ttin[1] = std::min(tsurfin, ttin[1]); }
510 }
511 }
512 if (tsurfout >= tminimal && tsurfout <= tmaximal)
513 {
514 if (std::abs(tsurfout - ttout[0]) >= halfTolerance)
515 {
516 if (tsurfout < ttout[0])
517 {
518 ttout[1] = ttout[0];
519 ttout[0] = tsurfout;
520 }
521 else { ttout[1] = std::min(tsurfout, ttout[1]); }
522 }
523 }
524 }
525
526 // Compute distance to In
527 //
528 if (ttin[0] == DBL_MAX) { return kInfinity; } // no entry point
529
530 // single entry point
531 if (ttin[1] == DBL_MAX)
532 {
533 G4double distin = ttin[0];
534 G4double distout = (distin >= ttout[0] - halfTolerance) ? ttout[1] : ttout[0];
535 G4double dist = (distout <= halfTolerance || distout - distin <= halfTolerance) ? kInfinity : distin;
536 return (dist < halfTolerance) ? 0. : dist;
537 }
538
539 // two entry points
540 if (ttin[1] < ttout[0])
541 {
542 G4double distin = ttin[1], distout = ttout[0];
543 G4double dist = (distout <= halfTolerance || distout - distin <= halfTolerance) ? kInfinity : distin;
544 return (dist < halfTolerance) ? 0. : dist;
545 }
546
547 // check 1st pair of in-out points
548 G4double distin1 = ttin[0], distout1 = ttout[0];
549 G4double dist1 = (distout1 <= halfTolerance || distout1 - distin1 <= halfTolerance) ? kInfinity : distin1;
550 if (dist1 != kInfinity) { return (dist1 < halfTolerance) ? 0. : dist1; }
551
552 // check 2nd pair of in-out points
553 G4double distin2 = ttin[1], distout2 = ttout[1];
554 G4double dist2 = (distout2 <= halfTolerance || distout2 - distin2 <= halfTolerance) ? kInfinity : distin2;
555 return (dist2 < halfTolerance) ? 0. : dist2;
556}
G4double C(G4double temp)
G4double B(G4double temperature)
G4double D(G4double temp)
const G4double A[17]
#define DBL_EPSILON
Definition templates.hh:66
#define DBL_MAX
Definition templates.hh:62

◆ DistanceToOut() [1/2]

G4double G4GenericTrap::DistanceToOut ( const G4ThreeVector & p) const
overridevirtual

Implements G4VSolid.

Definition at line 832 of file G4GenericTrap.cc.

833{
834 G4double px = p.x(), py = p.y(), pz = p.z();
835
836 // intersect edges by z = pz plane
837 G4TwoVector pp[4];
838 G4double z = (pz + fDz);
839 for (auto i = 0; i < 4; ++i) { pp[i] = fVertices[i] + fDelta[i]*z; }
840
841 // estimate distance to the solid
842 G4double dist = std::abs(pz) - fDz;
843 for (auto i = 0; i < 4; ++i)
844 {
845 if (fTwist[i] == 0.)
846 {
847 G4double dd = fSurf[i].D*px + fSurf[i].E*py + fSurf[i].F*pz + fSurf[i].G;
848 dist = std::max(dd, dist);
849 }
850 else
851 {
852 // comptute distance to the wedge (two planes) in front of the surface
853 auto j = (i + 1)%4;
854 G4double cx = pp[j].x() - pp[i].x();
855 G4double cy = pp[j].y() - pp[i].y();
856 G4double d = (pp[i].x() - px)*cy + (py - pp[i].y())*cx;
857 G4ThreeVector na(-cy, cx, fDelta[i].x()*cy - fDelta[i].y()*cx);
858 G4ThreeVector nb(-cy, cx, fDelta[j].x()*cy - fDelta[j].y()*cx);
859 G4double amag2 = na.mag2();
860 G4double bmag2 = nb.mag2();
861 G4double distab = (amag2 > bmag2) ? d/std::sqrt(amag2) : d/std::sqrt(bmag2); // d < 0
862 dist = std::max(distab, dist);
863 }
864 }
865 return (dist < 0.) ? -dist : 0.; // return safety distance
866}

◆ DistanceToOut() [2/2]

G4double G4GenericTrap::DistanceToOut ( const G4ThreeVector & p,
const G4ThreeVector & v,
const G4bool calcNorm = false,
G4bool * validNorm = nullptr,
G4ThreeVector * n = nullptr ) const
overridevirtual

Implements G4VSolid.

Definition at line 602 of file G4GenericTrap.cc.

607{
608 G4double px = p.x(), py = p.y(), pz = p.z();
609 G4double vx = v.x(), vy = v.y(), vz = v.z();
610
611 // Check intersections with plane faces
612 //
613 if ((std::abs(pz) - fDz) >= -halfTolerance && pz*vz > 0.)
614 {
615 if (calcNorm)
616 {
617 *validNorm = true;
618 n->set(0., 0., std::copysign(1., pz));
619 }
620 return 0.;
621 }
622 G4double tout = (vz == 0) ? DBL_MAX : (std::copysign(fDz, vz) - pz)/vz;
623 G4int iface = (vz < 0) ? -4 : -2; // little trick for z-normal: (-4+3)=-1, (-2+3)=+1
624
625 for (auto i = 0; i < 4; ++i)
626 {
627 if (fTwist[i] != 0) continue; // skip twisted faces
628 const G4GenericTrapPlane& surf = fPlane[2*i];
629 G4double cosa = surf.A*vx + surf.B*vy + surf.C*vz;
630 if (cosa > 0)
631 {
632 G4double dist = surf.A*px + surf.B*py + surf.C*pz + surf.D;
633 if (dist >= -halfTolerance)
634 {
635 if (calcNorm)
636 {
637 *validNorm = true;
638 n->set(surf.A, surf.B, surf.C);
639 }
640 return 0.;
641 }
642 G4double tmp = -dist/cosa;
643 if (tout > tmp) { tout = tmp; iface = i; }
644 }
645 }
646
647 // Check intersections with twisted faces
648 //
649 constexpr G4double EPSILON = 1000.*DBL_EPSILON;
650 for (auto i = 0; i < 4; ++i)
651 {
652 if (fTwist[i] == 0) continue; // skip plane faces
653
654 // twisted face, solve quadratic equation
655 const G4GenericTrapSurface& surf = fSurf[i];
656 G4double ABC = surf.A*vx + surf.B*vy + surf.C*vz;
657 G4double ABCF = surf.A*px + surf.B*py + surf.C*pz + surf.F;
658 G4double A = ABC*vz;
659 G4double B = 0.5*(surf.D*vx + surf.E*vy + ABCF*vz + ABC*pz);
660 G4double C = surf.D*px + surf.E*py + ABCF*pz + surf.G;
661
662 if (std::abs(A) <= EPSILON)
663 {
664 // case 1: track is parallel to the surface
665 if (std::abs(B) <= EPSILON) { continue; }
666
667 // case 2: single root
668 G4double tmp = -0.5*C/B;
669 // compute normal at intersection point and check direction
670 G4double x = px + vx*tmp;
671 G4double y = py + vy*tmp;
672 G4double z = pz + vz*tmp;
673 G4double nx = surf.A*z + surf.D;
674 G4double ny = surf.B*z + surf.E;
675 G4double nz = surf.A*x + surf.B*y + 2.*surf.C*z + surf.F;
676
677 if (nx*vx + ny*vy + nz*vz > 0.) // point is flying to outside
678 {
679 auto k = (i + 1)%4;
680 G4double tz = (pz + fDz);
681 G4TwoVector a = fVertices[i] + fDelta[i]*tz;
682 G4TwoVector b = fVertices[k] + fDelta[k]*tz;
683 G4double dx = b.x() - a.x();
684 G4double dy = b.y() - a.y();
685 G4double leng = std::sqrt(dx*dx + dy*dy);
686 G4double dist = dx*(py - a.y()) - dy*(px - a.x());
687 if (dist >= -halfTolerance*leng) // point is on the surface
688 {
689 if (calcNorm)
690 {
691 *validNorm = false;
692 G4double normx = surf.A*pz + surf.D;
693 G4double normy = surf.B*pz + surf.E;
694 G4double normz = surf.A*px + surf.B*py + 2.*surf.C*pz + surf.F;
695 G4double inv = 1./std::sqrt(normx*normx + normy*normy + normz*normz);
696 n->set(normx*inv, normy*inv, normz*inv);
697 }
698 return 0.;
699 }
700 if (tout > tmp) { tout = tmp; iface = i; }
701 }
702 continue;
703 }
704
705 // case 3: scratch or no intersection
706 G4double D = B*B - A*C;
707 if (D < 0.25*fScratch*fScratch*A*A)
708 {
709 // check position of the point
710 auto j = (i + 1)%4;
711 G4double tz = pz + fDz;
712 G4TwoVector a = fVertices[i] + fDelta[i]*tz;
713 G4TwoVector b = fVertices[j] + fDelta[j]*tz;
714 G4double dx = b.x() - a.x();
715 G4double dy = b.y() - a.y();
716 G4double leng = std::sqrt(dx*dx + dy*dy);
717 G4double dist = dx*(py - a.y()) - dy*(px - a.x());
718 if (dist <= -halfTolerance*leng) { continue; } // point is inside
719 if (A > 0 || dist > halfTolerance*leng) // convex surface (or point is outside)
720 {
721 if (calcNorm)
722 {
723 *validNorm = false;
724 G4double nx = surf.A*pz + surf.D;
725 G4double ny = surf.B*pz + surf.E;
726 G4double nz = surf.A*px + surf.B*py + 2.*surf.C*pz + surf.F;
727 G4double inv = 1./std::sqrt(nx*nx + ny*ny + nz*nz);
728 n->set(nx*inv, ny*inv, nz*inv);
729 }
730 return 0.;
731 }
732 continue;
733 }
734
735 // case 4: two intersection points
736 G4double tmp = -B - std::copysign(std::sqrt(D), B);
737 G4double t1 = tmp / A;
738 G4double t2 = C / tmp;
739 G4double tmin = std::min(t1, t2);
740 G4double tmax = std::max(t1, t2);
741
742 if (A < 0) // concave profile: tmin(out) -> tmax(in)
743 {
744 if (std::abs(tmax) < std::abs(tmin)) continue; // point flies inside
745 if (tmin <= halfTolerance) // point is on external side of the surface
746 {
747 G4double t = 0.5*(tmin + tmax);
748 G4double x = px + vx*t;
749 G4double y = py + vy*t;
750 G4double z = pz + vz*t;
751
752 auto j = (i + 1)%4;
753 G4double tz = z + fDz;
754 G4TwoVector a = fVertices[i] + fDelta[i]*tz;
755 G4TwoVector b = fVertices[j] + fDelta[j]*tz;
756 G4double dx = b.x() - a.x();
757 G4double dy = b.y() - a.y();
758 G4double leng = std::sqrt(dx*dx + dy*dy);
759 G4double dist = dx*(y - a.y()) - dy*(x - a.x());
760 if (dist <= -halfTolerance*leng) continue; // scratch
761 if (calcNorm)
762 {
763 *validNorm = false;
764 G4double nx = surf.A*pz + surf.D;
765 G4double ny = surf.B*pz + surf.E;
766 G4double nz = surf.A*px + surf.B*py + 2.*surf.C*pz + surf.F;
767 G4double inv = 1./std::sqrt(nx*nx + ny*ny + nz*nz);
768 n->set(nx*inv, ny*inv, nz*inv);
769 }
770 return 0.;
771 }
772 if (tout > tmin) { tout = tmin; iface = i; }
773 }
774 else // convex profile: tmin(in) -> tmax(out)
775 {
776 if (tmax < halfTolerance) // point is on the surface
777 {
778 if (calcNorm)
779 {
780 *validNorm = false;
781 G4double nx = surf.A*pz + surf.D;
782 G4double ny = surf.B*pz + surf.E;
783 G4double nz = surf.A*px + surf.B*py + 2.*surf.C*pz + surf.F;
784 G4double inv = 1./std::sqrt(nx*nx + ny*ny + nz*nz);
785 n->set(nx*inv, ny*inv, nz*inv);
786 }
787 return 0.;
788 }
789 if (tout > tmax) { tout = tmax; iface = i; }
790 }
791 }
792
793 // Compute normal, if required, and return distance to out
794 //
795 if (tout < halfTolerance) tout = 0.;
796 if (calcNorm)
797 {
798 if (iface < 0)
799 {
800 *validNorm = true;
801 n->set(0, 0, iface + 3); // little trick: (-4+3)=-1, (-2+3)=+1
802 }
803 else
804 {
805 const G4GenericTrapSurface& surf = fSurf[iface];
806 if (fTwist[iface] == 0)
807 {
808 *validNorm = true;
809 n->set(surf.D, surf.E, surf.F);
810 }
811 else
812 {
813 *validNorm = false;
814 G4double x = px + vx*tout;
815 G4double y = py + vy*tout;
816 G4double z = pz + vz*tout;
817 G4double nx = surf.A*z + surf.D;
818 G4double ny = surf.B*z + surf.E;
819 G4double nz = surf.A*x + surf.B*y + 2.*surf.C*z + surf.F;
820 G4double inv = 1./std::sqrt(nx*nx + ny*ny + nz*nz);
821 n->set(nx*inv, ny*inv, nz*inv);
822 }
823 }
824 }
825 return tout;
826}

◆ GetCubicVolume()

G4double G4GenericTrap::GetCubicVolume ( )
overridevirtual

Reimplemented from G4VSolid.

Definition at line 1070 of file G4GenericTrap.cc.

1071{
1072 if (fCubicVolume == 0.0)
1073 {
1074 // diagonals
1075 G4TwoVector A = fVertices[3] - fVertices[1];
1076 G4TwoVector B = fVertices[2] - fVertices[0];
1077 G4TwoVector C = fVertices[7] - fVertices[5];
1078 G4TwoVector D = fVertices[6] - fVertices[4];
1079
1080 // kross products
1081 G4double AB = A.x()*B.y() - A.y()*B.x();
1082 G4double CD = C.x()*D.y() - C.y()*D.x();
1083 G4double AD = A.x()*D.y() - A.y()*D.x();
1084 G4double CB = C.x()*B.y() - C.y()*B.x();
1085
1086 fCubicVolume = ((AB + CD)/3. + (AD + CB)/6.)*fDz;
1087 }
1088 return fCubicVolume;
1089}

◆ GetEntityType()

G4GeometryType G4GenericTrap::GetEntityType ( ) const
overridevirtual

Implements G4VSolid.

Definition at line 945 of file G4GenericTrap.cc.

946{
947 return { "G4GenericTrap" };
948}

Referenced by StreamInfo().

◆ GetExtent()

G4VisExtent G4GenericTrap::GetExtent ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 1511 of file G4GenericTrap.cc.

1512{
1513 return { fMinBBox.x(), fMaxBBox.x(),
1514 fMinBBox.y(), fMaxBBox.y(),
1515 fMinBBox.z(), fMaxBBox.z() };
1516}

◆ GetNofVertices()

G4int G4GenericTrap::GetNofVertices ( ) const
inline

◆ GetPointOnSurface()

G4ThreeVector G4GenericTrap::GetPointOnSurface ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 994 of file G4GenericTrap.cc.

995{
996 if (fArea[0] + fArea[1] + fArea[2] + fArea[3] == 0.)
997 {
998 G4AutoLock l(&lateralareaMutex);
999 fArea[0] = GetLateralFaceArea(0);
1000 fArea[1] = GetLateralFaceArea(1);
1001 fArea[2] = GetLateralFaceArea(2);
1002 fArea[3] = GetLateralFaceArea(3);
1003 l.unlock();
1004 }
1005
1006 constexpr G4int iface[6][4] =
1007 { {0,1,2,3}, {0,4,5,1}, {1,5,6,2}, {2,6,7,3}, {3,7,4,0}, {4,5,6,7} };
1008
1009 G4bool isTwisted[6] = {false};
1010 for (auto i = 0; i < 4; ++i) { isTwisted[i + 1] = (fTwist[i] != 0.0); }
1011
1012 G4double ssurf[6];
1013 G4TwoVector A = fVertices[3] - fVertices[1];
1014 G4TwoVector B = fVertices[2] - fVertices[0];
1015 G4TwoVector C = fVertices[7] - fVertices[5];
1016 G4TwoVector D = fVertices[6] - fVertices[4];
1017 ssurf[0] = (A.x()*B.y() - A.y()*B.x())*0.5; // -fDz face
1018 ssurf[1] = ssurf[0] + fArea[0];
1019 ssurf[2] = ssurf[1] + fArea[1];
1020 ssurf[3] = ssurf[2] + fArea[2];
1021 ssurf[4] = ssurf[3] + fArea[3];
1022 ssurf[5] = ssurf[4] + (C.x()*D.y() - C.y()*D.x())*.5; // +fDz face
1023
1024 G4double select = ssurf[5]*G4QuickRand();
1025 G4int k;
1026 for (k = 0; k < 5; ++k) { if (select <= ssurf[k]) break; }
1027
1028 G4int i0 = iface[k][0];
1029 G4int i1 = iface[k][1];
1030 G4int i2 = iface[k][2];
1031 G4int i3 = iface[k][3];
1032 G4ThreeVector pp[4];
1033 pp[0].set(fVertices[i0].x(), fVertices[i0].y(), ((k == 5) ? fDz : -fDz));
1034 pp[1].set(fVertices[i1].x(), fVertices[i1].y(), ((k == 0) ? -fDz : fDz));
1035 pp[2].set(fVertices[i2].x(), fVertices[i2].y(), ((k == 0) ? -fDz : fDz));
1036 pp[3].set(fVertices[i3].x(), fVertices[i3].y(), ((k == 5) ? fDz : -fDz));
1037
1038 G4ThreeVector point;
1039 if (isTwisted[k])
1040 { // twisted face, rejection sampling
1041 G4double maxlength = std::max((pp[2] - pp[1]).mag(), (pp[3] - pp[0]).mag());
1042 point = (pp[0] + pp[1] + pp[2] + pp[3])*0.25;
1043 for (auto i = 0; i < 10000; ++i)
1044 {
1045 G4double u = G4QuickRand();
1046 G4ThreeVector p0 = pp[0] + (pp[1] - pp[0])*u;
1047 G4ThreeVector p1 = pp[3] + (pp[2] - pp[3])*u;
1048 G4double v = G4QuickRand()*(maxlength/(p1 - p0).mag());
1049 if (v >= 1.) continue;
1050 point = p0 + (p1 - p0)*v;
1051 break;
1052 }
1053 }
1054 else
1055 { // plane face
1056 G4double u = G4QuickRand();
1057 G4double v = G4QuickRand();
1058 if (u + v > 1.) { u = 1. - u; v = 1. - v; }
1059 G4double ss = (((pp[2] - pp[0]).cross(pp[3] - pp[0])).mag())*0.5;
1060 G4int j = (select > ssurf[k] - ss) ? 3 : 1;
1061 point = pp[0] + (pp[2] - pp[0])*u + (pp[j] - pp[0])*v;
1062 }
1063 return point;
1064}
G4TemplateAutoLock< G4Mutex > G4AutoLock
G4double G4QuickRand()

◆ GetPolyhedron()

G4Polyhedron * G4GenericTrap::GetPolyhedron ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 1482 of file G4GenericTrap.cc.

1483{
1484 if ( (fpPolyhedron == nullptr)
1485 || fRebuildPolyhedron
1486 || (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
1487 fpPolyhedron->GetNumberOfRotationSteps()) )
1488 {
1489 G4AutoLock l(&polyhedronMutex);
1490 delete fpPolyhedron;
1491 fpPolyhedron = CreatePolyhedron();
1492 fRebuildPolyhedron = false;
1493 l.unlock();
1494 }
1495 return fpPolyhedron;
1496}
G4Polyhedron * CreatePolyhedron() const override

◆ GetSurfaceArea()

G4double G4GenericTrap::GetSurfaceArea ( )
overridevirtual

Reimplemented from G4VSolid.

Definition at line 1157 of file G4GenericTrap.cc.

1158{
1159 if (fSurfaceArea == 0.0)
1160 {
1161 G4TwoVector A = fVertices[3] - fVertices[1];
1162 G4TwoVector B = fVertices[2] - fVertices[0];
1163 G4TwoVector C = fVertices[7] - fVertices[5];
1164 G4TwoVector D = fVertices[6] - fVertices[4];
1165 G4double S_bot = (A.x()*B.y() - A.y()*B.x())*0.5;
1166 G4double S_top = (C.x()*D.y() - C.y()*D.x())*0.5;
1167 fArea[0] = GetLateralFaceArea(0);
1168 fArea[1] = GetLateralFaceArea(1);
1169 fArea[2] = GetLateralFaceArea(2);
1170 fArea[3] = GetLateralFaceArea(3);
1171 fSurfaceArea = S_bot + S_top + fArea[0] + fArea[1] + fArea[2] + fArea[3];
1172 }
1173 return fSurfaceArea;
1174}

◆ GetTwistAngle()

G4double G4GenericTrap::GetTwistAngle ( G4int index) const
inline

Referenced by CreatePolyhedron().

◆ GetVertex()

G4TwoVector G4GenericTrap::GetVertex ( G4int index) const
inline

Referenced by CalculateExtent().

◆ GetVertices()

const std::vector< G4TwoVector > & G4GenericTrap::GetVertices ( ) const
inline

◆ GetVisSubdivisions()

G4int G4GenericTrap::GetVisSubdivisions ( ) const
inline

Referenced by CreatePolyhedron().

◆ GetZHalfLength()

G4double G4GenericTrap::GetZHalfLength ( ) const
inline

◆ Inside()

EInside G4GenericTrap::Inside ( const G4ThreeVector & p) const
overridevirtual

Implements G4VSolid.

Definition at line 149 of file G4GenericTrap.cc.

150{
151 G4double px = p.x(), py = p.y(), pz = p.z();
152
153 // intersect edges by z = pz plane
154 G4TwoVector pp[4];
155 G4double z = (pz + fDz);
156 for (auto i = 0; i < 4; ++i) { pp[i] = fVertices[i] + fDelta[i]*z; }
157
158 // estimate distance to the solid
159 G4double dist = std::abs(pz) - fDz;
160 for (auto i = 0; i < 4; ++i)
161 {
162 if (fTwist[i] == 0.)
163 {
164 G4double dd = fSurf[i].D*px + fSurf[i].E*py + fSurf[i].F*pz + fSurf[i].G;
165 dist = std::max(dd, dist);
166 }
167 else
168 {
169 auto j = (i + 1)%4;
170 G4TwoVector a = pp[i];
171 G4TwoVector b = pp[j];
172 G4double dx = b.x() - a.x();
173 G4double dy = b.y() - a.y();
174 G4double leng = std::sqrt(dx*dx + dy*dy);
175 G4double dd = (dx*(py - a.y()) - dy*(px - a.x()))/leng;
176 dist = std::max(dd, dist);
177 }
178 }
179 return (dist > halfTolerance) ? kOutside :
180 ((dist > -halfTolerance) ? kSurface : kInside);
181}
@ kInside
Definition geomdefs.hh:70
@ kOutside
Definition geomdefs.hh:68
@ kSurface
Definition geomdefs.hh:69

◆ IsFaceted()

G4bool G4GenericTrap::IsFaceted ( ) const
overridevirtual

Reimplemented from G4VSolid.

Definition at line 954 of file G4GenericTrap.cc.

955{
956 return (!fIsTwisted);
957}

◆ IsTwisted()

G4bool G4GenericTrap::IsTwisted ( ) const
inline

◆ operator=()

G4GenericTrap & G4GenericTrap::operator= ( const G4GenericTrap & rhs)

Definition at line 117 of file G4GenericTrap.cc.

118{
119 // Check assignment to self
120 if (this == &rhs) { return *this; }
121
122 // Copy base class data
124
125 // Copy data
126 halfTolerance = rhs.halfTolerance; fScratch = rhs.fScratch;
127 fDz = rhs.fDz; fVertices = rhs.fVertices; fIsTwisted = rhs.fIsTwisted;
128 fMinBBox = rhs.fMinBBox; fMaxBBox = rhs.fMaxBBox;
129 fVisSubdivisions = rhs.fVisSubdivisions;
130 fSurfaceArea = rhs.fSurfaceArea; fCubicVolume = rhs.fCubicVolume;
131
132 for (auto i = 0; i < 8; ++i) { fVertices[i] = rhs.fVertices[i]; }
133 for (auto i = 0; i < 5; ++i) { fTwist[i] = rhs.fTwist[i]; }
134 for (auto i = 0; i < 4; ++i) { fDelta[i] = rhs.fDelta[i]; }
135 for (auto i = 0; i < 8; ++i) { fPlane[i] = rhs.fPlane[i]; }
136 for (auto i = 0; i < 4; ++i) { fSurf[i] = rhs.fSurf[i]; }
137 for (auto i = 0; i < 4; ++i) { fArea[i] = rhs.fArea[i]; }
138
139 fRebuildPolyhedron = false;
140 delete fpPolyhedron; fpPolyhedron = nullptr;
141
142 return *this;
143}
G4VSolid & operator=(const G4VSolid &rhs)
Definition G4VSolid.cc:107

◆ SetVisSubdivisions()

void G4GenericTrap::SetVisSubdivisions ( G4int subdiv)
inline

◆ StreamInfo()

std::ostream & G4GenericTrap::StreamInfo ( std::ostream & os) const
overridevirtual

Implements G4VSolid.

Definition at line 972 of file G4GenericTrap.cc.

973{
974 G4long oldprc = os.precision(16);
975 os << "-----------------------------------------------------------\n"
976 << " *** Dump for solid - " << GetName() << " ***\n"
977 << " ===================================================\n"
978 << "Solid geometry type: " << GetEntityType() << "\n"
979 << " half length Z: " << fDz/mm << "\n"
980 << " list of vertices:\n";
981 for (G4int i = 0; i < 8; ++i)
982 {
983 os << " #" << i << " " << fVertices[i] << "\n";
984 }
985 os << "-----------------------------------------------------------\n";
986 os.precision(oldprc);
987 return os;
988}
long G4long
Definition G4Types.hh:87
G4GeometryType GetEntityType() const override
G4String GetName() const

◆ SurfaceNormal()

G4ThreeVector G4GenericTrap::SurfaceNormal ( const G4ThreeVector & p) const
overridevirtual

Implements G4VSolid.

Definition at line 187 of file G4GenericTrap.cc.

188{
189 G4double halfToleranceSquared = halfTolerance*halfTolerance;
190 G4double px = p.x(), py = p.y(), pz = p.z();
191 G4double nx = 0, ny = 0, nz = 0;
192
193 // intersect edges by z = pz plane
194 G4TwoVector pp[4];
195 G4double tz = (pz + fDz);
196 for (auto i = 0; i < 4; ++i) { pp[i] = fVertices[i] + fDelta[i]*tz; }
197
198 // check bottom and top faces
199 G4double dz = std::abs(pz) - fDz;
200 nz = std::copysign(G4double(std::abs(dz) <= halfTolerance), pz);
201
202 // check lateral faces
203 for (auto i = 0; i < 4; ++i)
204 {
205 if (fTwist[i] == 0.)
206 {
207 G4double dd = fSurf[i].D*px + fSurf[i].E*py + fSurf[i].F*pz + fSurf[i].G;
208 if (std::abs(dd) <= halfTolerance)
209 {
210 nx += fSurf[i].D;
211 ny += fSurf[i].E;
212 nz += fSurf[i].F;
213 }
214 }
215 else
216 {
217 auto j = (i + 1)%4;
218 G4TwoVector a = pp[i];
219 G4TwoVector b = pp[j];
220 G4double dx = b.x() - a.x();
221 G4double dy = b.y() - a.y();
222 G4double ll = dx*dx + dy*dy;
223 G4double dd = dx*(py - a.y()) - dy*(px - a.x());
224 if (dd*dd <= halfToleranceSquared*ll)
225 {
226 G4double x = fSurf[i].A*pz + fSurf[i].D;
227 G4double y = fSurf[i].B*pz + fSurf[i].E;
228 G4double z = fSurf[i].A*px + fSurf[i].B*py + 2.*fSurf[i].C*pz + fSurf[i].F;
229 G4double inv = 1./std::sqrt(x*x + y*y + z*z);
230 nx += x*inv;
231 ny += y*inv;
232 nz += z*inv;
233 }
234 }
235 }
236
237 // return normal
238 G4double mag2 = nx*nx + ny*ny + nz*nz;
239 if (mag2 == 0.) return ApproxSurfaceNormal(p); // point is not on the surface
240 G4double mag = std::sqrt(mag2);
241 G4double inv = (mag == 1.) ? 1. : 1./mag;
242 return { nx*inv, ny*inv, nz*inv };
243}

The documentation for this class was generated from the following files: