Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCL::ParticleEntryChannel Class Reference

#include <G4INCLParticleEntryChannel.hh>

+ Inheritance diagram for G4INCL::ParticleEntryChannel:

Public Member Functions

 ParticleEntryChannel (Nucleus *n, Particle *p)
 
virtual ~ParticleEntryChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 49 of file G4INCLParticleEntryChannel.hh.

Constructor & Destructor Documentation

◆ ParticleEntryChannel()

G4INCL::ParticleEntryChannel::ParticleEntryChannel ( Nucleus * n,
Particle * p )

Definition at line 45 of file G4INCLParticleEntryChannel.cc.

46 :theNucleus(n), theParticle(p)
47 {}

◆ ~ParticleEntryChannel()

G4INCL::ParticleEntryChannel::~ParticleEntryChannel ( )
virtual

Definition at line 49 of file G4INCLParticleEntryChannel.cc.

50 {}

Member Function Documentation

◆ fillFinalState()

void G4INCL::ParticleEntryChannel::fillFinalState ( FinalState * fs)
virtual

Implements G4INCL::IChannel.

Definition at line 52 of file G4INCLParticleEntryChannel.cc.

52 {
53 // Behaves slightly differency if a third body (the projectile) is present
54 G4bool isNN = theNucleus->isNucleusNucleusCollision();
55
56 /* Corrections to the energy of the entering particle
57 *
58 * In particle-nucleus reactions, the goal of this correction is to satisfy
59 * energy conservation in particle-nucleus reactions using real particle
60 * and nuclear masses.
61 *
62 * In nucleus-nucleus reactions, in addition to the above, the correction
63 * is determined by a model for the excitation energy of the
64 * quasi-projectile (QP). The energy of the entering nucleon is such that
65 * the QP excitation energy, as determined by conservation, is what given
66 * by our model.
67 *
68 * Possible choices for the correction (or, equivalently, for the QP
69 * excitation energy):
70 *
71 * 1. the correction is 0. (same as in particle-nucleus);
72 * 2. the correction is the separation energy of the entering nucleon in
73 * the current QP;
74 * 3. the QP excitation energy is given by A. Boudard's algorithm, as
75 * implemented in INCL4.2-HI/Geant4.
76 * 4. the QP excitation energy vanishes.
77 *
78 * Ideally, the QP excitation energy should always be >=0. Algorithms 1.
79 * and 2. do not guarantee this, although violations to the rule seem to be
80 * more severe for 1. than for 2.. Algorithms 3. and 4., by construction,
81 * yields non-negative QP excitation energies.
82 */
83 G4double theCorrection;
84 if(isNN) {
85// assert(theParticle->isNucleonorLambda()); // Possible hypernucleus projectile of inverse kinematic
86 ProjectileRemnant * const projectileRemnant = theNucleus->getProjectileRemnant();
87// assert(projectileRemnant);
88
89 // No correction (model 1. above)
90 /*
91 theCorrection = theParticle->getEmissionQValueCorrection(
92 theNucleus->getA() + theParticle->getA(),
93 theNucleus->getZ() + theParticle->getZ())
94 + theParticle->getTableMass() - theParticle->getINCLMass();
95 const G4double theProjectileCorrection = 0.;
96 */
97
98 // Correct the energy of the entering particle for the Q-value of the
99 // emission from the projectile (model 2. above)
100 /*
101 theCorrection = theParticle->getTransferQValueCorrection(
102 projectileRemnant->getA(), projectileRemnant->getZ(),
103 theNucleus->getA(), theNucleus->getZ());
104 G4double theProjectileCorrection;
105 if(projectileRemnant->getA()>theParticle->getA()) { // if there are any particles left
106 // Compute the projectile Q-value (to be used as a correction to the
107 // other components of the projectile remnant)
108 theProjectileCorrection = ParticleTable::getTableQValue(
109 projectileRemnant->getA() - theParticle->getA(),
110 projectileRemnant->getZ() - theParticle->getZ(),
111 theParticle->getA(),
112 theParticle->getZ());
113 } else
114 theProjectileCorrection = 0.;
115 */
116
117 // Fix the correction in such a way that the quasi-projectile excitation
118 // energy is given by A. Boudard's INCL4.2-HI model (model 3. above).
119 const G4double theProjectileExcitationEnergy =
120 (projectileRemnant->getA()-theParticle->getA()>1) ?
121 (projectileRemnant->computeExcitationEnergyExcept(theParticle->getID())) :
122 0.;
123 // Set the projectile excitation energy to zero (cold quasi-projectile,
124 // model 4. above).
125 // const G4double theProjectileExcitationEnergy = 0.;
126 // The part that follows is common to model 3. and 4.
127 const G4double theProjectileEffectiveMass =
128 ParticleTable::getTableMass(projectileRemnant->getA() - theParticle->getA(), projectileRemnant->getZ() - theParticle->getZ(), projectileRemnant->getS() - theParticle->getS())
129 + theProjectileExcitationEnergy;
130 const ThreeVector &theProjectileMomentum = projectileRemnant->getMomentum() - theParticle->getMomentum();
131 const G4double theProjectileEnergy = std::sqrt(theProjectileMomentum.mag2() + theProjectileEffectiveMass*theProjectileEffectiveMass);
132 const G4double theProjectileCorrection = theProjectileEnergy - (projectileRemnant->getEnergy() - theParticle->getEnergy());
133 theCorrection = theParticle->getEmissionQValueCorrection(
134 theNucleus->getA() + theParticle->getA(),
135 theNucleus->getZ() + theParticle->getZ(),
136 theNucleus->getS() + theParticle->getS())
137 + theParticle->getTableMass() - theParticle->getINCLMass()
138 + theProjectileCorrection;
139 // end of part common to model 3. and 4.
140
141
142 projectileRemnant->removeParticle(theParticle, theProjectileCorrection);
143 } else {
144 const G4int ACN = theNucleus->getA() + theParticle->getA();
145 const G4int ZCN = theNucleus->getZ() + theParticle->getZ();
146 const G4int SCN = theNucleus->getS() + theParticle->getS();
147 // Correction to the Q-value of the entering particle
148 if(theParticle->isKaon()) theCorrection = theParticle->getEmissionQValueCorrection(ACN,ZCN,theNucleus->getS());
149 else theCorrection = theParticle->getEmissionQValueCorrection(ACN,ZCN,SCN);
150 INCL_DEBUG("The following Particle enters with correction " << theCorrection << '\n'
151 << theParticle->print() << '\n');
152 }
153
154 const G4double energyBefore = theParticle->getEnergy() - theCorrection;
155 G4bool success = particleEnters(theCorrection);
156 fs->addEnteringParticle(theParticle);
157
158 if(!success) {
159 fs->makeParticleBelowZero();
160 } else if(theParticle->isNucleonorLambda() &&
161 theParticle->getKineticEnergy()<theNucleus->getPotential()->getFermiEnergy(theParticle)) {
162 // If the participant is a nucleon entering below its Fermi energy, force a
163 // compound nucleus
164 fs->makeParticleBelowFermi();
165 } else if(theParticle->isKaon()) theNucleus->setNumberOfKaon(theNucleus->getNumberOfKaon()+1);
166
167 fs->setTotalEnergyBeforeInteraction(energyBefore);
168 }
#define INCL_DEBUG(x)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.

The documentation for this class was generated from the following files: