Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BEChargedChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation of the HETC88 code into Geant4.
27// Evaporation and De-excitation parts
28// T. Lampen, Helsinki Institute of Physics, May-2000
29//
30// 20120608 M. Kelsey -- Change vars 's','m','m2' to avoid name collisions
31
32#include "G4BEChargedChannel.hh"
33#include "G4SystemOfUnits.hh"
34
36{
37 verboseLevel = 0;
38}
39
40
42{
43}
44
45
47{
48 G4int residualZ = nucleusZ - particleZ;
49 G4int residualA = nucleusA - particleA;
50
51// Check if nucleus is too small, if this evaporation channel
52// leads to an impossible residual nucleus or if there is no enough
53// energy.
54 if ( nucleusA < 2.0 * particleA ||
55 nucleusZ < 2.0 * particleZ ||
56 residualA <= residualZ ||
58 {
59 if ( verboseLevel >= 6 )
60 G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << " = 0 " << G4endl;
62 return;
63 }
64
65 // In HETC88 s-s0 was used in std::exp( s ), in which s0 was either 50 or
66 // max(s_i), where i goes over all channels.
67
69 G4double slevel = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
70 G4double constant = A / 2 * ( 2 * spin + 1 ) * ( 1 + coulombFactor() );
71 G4double eye1 = ( slevel*slevel - 3 * slevel + 3 ) / ( 4 * levelParam*levelParam ) * std::exp( slevel );
72
73 emissionProbability = constant * std::pow( G4double(residualA), 0.6666666 ) * eye1;
74
75 if ( verboseLevel >= 6 )
76 G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << G4endl
77 << " res A = " << residualA << G4endl
78 << " res Z = " << residualZ << G4endl
79 << " c*(c_i+1) = "<< constant << G4endl
80 << " qmfactor = "<< qmFactor() << G4endl
81 << " coulombfactor = "<< coulombFactor() << G4endl
82 << " E = " << excitationEnergy << G4endl
83 << " correction = " << correction << G4endl
84 << " eye1 = " << eye1 << G4endl
85 << " levelParam = " << levelParam << G4endl
86 << " thresh = " << getThresh() << G4endl
87 << " s = " << s << G4endl
88 << " probability = " << emissionProbability << G4endl;
89
90 return;
91}
92
93
95{
96 G4double levelParam;
97 levelParam = getLevelDensityParameter();
98
99 const G4double xMax = excitationEnergy - getThresh() - correction; // maximum number
100 const G4double xProb = ( - 1 + std::sqrt ( 1 + 4 * levelParam * xMax ) ) / ( 2 * levelParam ); // most probable value
101 const G4double maxProb = xProb * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - xProb ) ) ); // maximum value of P(x)
102
103 // Sample x according to density function P(x) with rejection method
104 G4double r1;
105 G4double r2;
106 G4int koe=0;
107 do
108 {
109 r1 = G4UniformRand() * xMax;
110 r2 = G4UniformRand() * maxProb;
111 koe++;
112 }
113 while ( r1 * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - r1 ) ) ) < r2 );
114
115// G4cout << "Q ch " << koe << G4endl;
116 G4double kineticEnergy = r1 + getCoulomb(); // add coulomb potential;
117
118 if ( verboseLevel >= 10 )
119 G4cout << " G4BENeutronChannel : sampleKineticEnergy() " << G4endl
120 << " kinetic n e = " << kineticEnergy << G4endl
121 << " levelParam = " << levelParam << G4endl
122 << " thresh= " << getThresh() << G4endl;
123
124 return kineticEnergy;
125}
126
127
129{
130 // Coefficient c_p:s for empirical cross section formula are
131 // defined with the proton constant. See Dostrovsky, Phys. Rev.,
132 // vol. 116, 1959.
133 G4double t[7] = { 0.08 , 0 , -0.06 , -0.1 , -0.1 , -0.1 , -0.1 };
135
136 if ( Z >= 70.0 ) return t[6];
137 if ( Z <= 10.0 ) return t[0];
138
139 // Linear interpolation
140 G4int n = G4int( 0.1 * Z + 1.0 );
141 G4float x = ( 10 * n - Z ) * 0.1;
142 G4double ret_val = x * t[n - 2] + ( 1.0 - x ) * t[n-1];
143
144 return ret_val;
145}
146
147
149{
150 // Coefficient k_p for empirical cross section formula are defined
151 // with the proton constant. See Dostrovsky, Phys. Rev., vol. 116,
152 // 1959
153 G4double t[7] = { 0.36, 0.51, 0.60, 0.66, 0.68, 0.69, 0.69 };
155
156 if ( Z >= 70.0 ) return t[6];
157 if ( Z <= 10.0 ) return t[0];
158
159 // Linear interpolation
160 G4int n = G4int( 0.1 * Z + 1.0 );
161 G4float x = ( 10 * n - Z ) * 0.1;
162 return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
163}
164
165
167{
168// Coefficient k_alpha for empirical cross section formula presented
169// in Dostrovsky, Phys. Rev., vol. 116, 1959
170
171 G4double t[7] = { 0.77, 0.81, 0.85, 0.89, 0.93, 0.97, 1.00 };
173
174 if ( Z >= 70.0 ) return t[6];
175 if ( Z <= 10.0 ) return t[0];
176
177 // Linear interpolation
178 G4int n = G4int( 0.1 * Z + 1.0 );
179 G4float x = ( 10 * n - Z ) * 0.1;
180 return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
181}
double G4double
Definition: G4Types.hh:64
float G4float
Definition: G4Types.hh:65
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
virtual void calculateProbability()
G4double sampleKineticEnergy()
G4double coulombFactorForProton()
virtual G4double coulombFactor()=0