Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// class G4PolynomialSolver
30//
31// Class description:
32//
33// G4PolynomialSolver allows the user to solve a polynomial equation
34// with a great precision. This is used by Implicit Equation solver.
35//
36// The Bezier clipping method is used to solve the polynomial.
37//
38// How to use it:
39// Create a class that is the function to be solved.
40// This class could have internal parameters to allow to change
41// the equation to be solved without recreating a new one.
42//
43// Define a Polynomial solver, example:
44// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
45// PolySolver (&MyFunction,
46// &MyFunctionClass::Function,
47// &MyFunctionClass::Derivative,
48// precision);
49//
50// The precision is relative to the function to solve.
51//
52// In MyFunctionClass, provide the function to solve and its derivative:
53// Example of function to provide :
54//
55// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
56//
57// G4double MyFunctionClass::Function(G4double value)
58// {
59// G4double Lx,Ly,Lz;
60// G4double result;
61//
62// Lx = x + value*dx;
63// Ly = y + value*dy;
64// Lz = z + value*dz;
65//
66// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
67//
68// return result ;
69// }
70//
71// G4double MyFunctionClass::Derivative(G4double value)
72// {
73// G4double Lx,Ly,Lz;
74// G4double result;
75//
76// Lx = x + value*dx;
77// Ly = y + value*dy;
78// Lz = z + value*dz;
79//
80// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
81// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
82// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
83//
84// return result;
85// }
86//
87// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
88// following:
89//
90// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
91//
92
93// History:
94//
95// - 19.12.00 E.Medernach, First implementation
96//
97
98#ifndef G4POL_SOLVER_HH
99#define G4POL_SOLVER_HH
100
101#include "globals.hh"
102
103template <class T, class F>
105{
106public: // with description
107
108 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
110
111
112 G4double solve (G4double IntervalMin, G4double IntervalMax);
113
114private:
115
116 G4double Newton (G4double IntervalMin, G4double IntervalMax);
117 //General Newton method with Bezier Clipping
118
119 // Works for polynomial of order less or equal than 4.
120 // But could be changed to work for polynomial of any order providing
121 // that we find the bezier control points.
122
123 G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
124 // This is just one iteration of Bezier Clipping
125
126
127 T* FunctionClass ;
128 F Function ;
129 F Derivative ;
130
131 G4double Precision;
132};
133
134#include "G4PolynomialSolver.icc"
135
136#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4PolynomialSolver(T *typeF, F func, F deriv, G4double precision)
G4double solve(G4double IntervalMin, G4double IntervalMax)