50 lowestEnergyLimit= 1.e-6*eV;
66 char* dirName = getenv(
"G4PhysListDocDir");
68 std::ofstream outFile;
71 outFile.open(pathName);
72 outFile <<
"<html>\n";
73 outFile <<
"<head>\n";
75 outFile <<
"<title>Description of G4HadronElastic Model</title>\n";
76 outFile <<
"</head>\n";
77 outFile <<
"<body>\n";
79 outFile <<
"G4HadronElastic is a hadron-nucleus elastic scattering\n"
80 <<
"model which uses the Gheisha two-exponential momentum\n"
81 <<
"transfer parameterization. The model is fully relativistic\n"
82 <<
"as opposed to the original Gheisha model which was not.\n"
83 <<
"This model may be used for all long-lived hadrons at all\n"
84 <<
"incident energies.\n";
86 outFile <<
"</body>\n";
87 outFile <<
"</html>\n";
100 if(ekin <= lowestEnergyLimit) {
116 G4cout <<
"G4HadronElastic: "
118 <<
" Plab(GeV/c)= " << plab/GeV
119 <<
" Ekin(MeV) = " << ekin/MeV
120 <<
" scattered off Z= " << Z
135 G4double tmax = 4.0*momentumCMS*momentumCMS;
144 if(cost > 1.0 || cost < -1.0) {
146 G4cout <<
"G4HadronElastic WARNING (1 - cost)= " << 1 - cost
147 <<
" after scattering of "
149 <<
" p(GeV/c)= " << plab/GeV
150 <<
" on an ion Z= " << Z <<
" A= " << A
158 sint = std::sqrt((1.0-cost)*(1.0+cost));
161 G4cout <<
" t= " << t <<
" tmax(GeV^2)= " << tmax/(GeV*GeV)
162 <<
" Pcms(GeV)= " << momentumCMS/GeV <<
" cos(t)=" << cost
163 <<
" sin(t)=" << sint <<
G4endl;
165 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
168 std::sqrt(momentumCMS*momentumCMS + m1*m1));
174 G4cout <<
" m= " << m1 <<
" Efin(MeV)= " << eFinal
175 <<
" Proj: 4-mom " << lv1 <<
" Final: " << nlv1
178 if(eFinal <= lowestEnergyLimit) {
179 if(eFinal < 0.0 && verboseLevel > 0) {
180 G4cout <<
"G4HadronElastic WARNING Efinal= " << eFinal
181 <<
" after scattering of "
183 <<
" p(GeV/c)= " << plab/GeV
184 <<
" on an ion Z= " << Z <<
" A= " << A
198 G4cout <<
"Recoil: " <<
" m= " << mass2 <<
" Erec(MeV)= " << erec
205 if(Z == 1 && A == 1) { theDef = theProton; }
206 else if (Z == 1 && A == 2) { theDef = theDeuteron; }
208 else if (Z == 2 && A == 3) { theDef =
G4He3::He3(); }
209 else if (Z == 2 && A == 4) { theDef = theAlpha; }
216 }
else if(erec > 0.0) {
229 static const G4double GeV2 = GeV*GeV;
231 G4double tmax = 4.0*momentumCMS*momentumCMS/GeV2;
236 bb = 14.5*g4pow->
Z23(A);
237 aa = g4pow->
powZ(A, 1.63)/bb;
238 cc = 1.4*g4pow->
Z13(A)/dd;
240 bb = 60.*g4pow->
Z13(A);
241 aa = g4pow->
powZ(A, 1.33)/bb;
242 cc = 0.4*g4pow->
powZ(A, 0.4)/dd;
244 G4double q1 = 1.0 - std::exp(-bb*tmax);
245 G4double q2 = 1.0 - std::exp(-dd*tmax);
CLHEP::HepLorentzVector G4LorentzVector
G4DLLIMPORT std::ostream G4cout
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
static G4Deuteron * Deuteron()
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
void SetLocalEnergyDeposit(G4double aE)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void Description() const
G4double ComputeMomentumCMS(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
G4HadronElastic(const G4String &name="hElasticLHEP")
virtual ~G4HadronElastic()
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
G4double GetRecoilEnergyThreshold() const
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int J=0)
static G4Neutron * Neutron()
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double GetPDGMass() const
const G4String & GetParticleName() const
static G4ParticleTable * GetParticleTable()
G4IonTable * GetIonTable()
static G4Pow * GetInstance()
G4double powZ(G4int Z, G4double y)
static G4Proton * Proton()
static G4Triton * Triton()