Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEKaonZeroShortInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34//
35// New version by D.H. Wright (SLAC) to fix seg fault in old version
36// 21 January 2010
37
39#include "globals.hh"
40#include "G4ios.hh"
42
43void G4HEKaonZeroShortInelastic::ModelDescription(std::ostream& outFile) const
44{
45 outFile << "G4HEKaonZeroShortInelastic is one of the High Energy\n"
46 << "Parameterized (HEP) models used to implement inelastic\n"
47 << "K0S scattering from nuclei. It is a re-engineered\n"
48 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
49 << "initial collision products into backward- and forward-going\n"
50 << "clusters which are then decayed into final state hadrons.\n"
51 << "The model does not conserve energy on an event-by-event\n"
52 << "basis. It may be applied to K0S with initial energies\n"
53 << "above 20 GeV.\n";
54}
55
56
59 G4Nucleus& targetNucleus)
60{
61 G4HEVector* pv = new G4HEVector[MAXPART];
62 const G4HadProjectile* aParticle = &aTrack;
63 const G4double atomicWeight = targetNucleus.GetA_asInt();
64 const G4double atomicNumber = targetNucleus.GetZ_asInt();
65 G4HEVector incidentParticle(aParticle);
66
67 G4int incidentCode = incidentParticle.getCode();
68 G4double incidentMass = incidentParticle.getMass();
69 G4double incidentTotalEnergy = incidentParticle.getEnergy();
70
71 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
72 // DHW 19 May 2011: variable set but not used
73
74 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
75
76 if(incidentKineticEnergy < 1)
77 G4cout << "GHEKaonZeroShortInelastic: incident energy < 1 GeV" << G4endl;
78
79 if(verboseLevel > 1) {
80 G4cout << "G4HEKaonZeroShortInelastic::ApplyYourself" << G4endl;
81 G4cout << "incident particle " << incidentParticle.getName()
82 << "mass " << incidentMass
83 << "kinetic energy " << incidentKineticEnergy
84 << G4endl;
85 G4cout << "target material with (A,Z) = ("
86 << atomicWeight << "," << atomicNumber << ")" << G4endl;
87 }
88
89 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
90 atomicWeight, atomicNumber);
91 if(verboseLevel > 1)
92 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
93
94 incidentKineticEnergy -= inelasticity;
95
96 G4double excitationEnergyGNP = 0.;
97 G4double excitationEnergyDTA = 0.;
98
99 G4double excitation = NuclearExcitation(incidentKineticEnergy,
100 atomicWeight, atomicNumber,
101 excitationEnergyGNP,
102 excitationEnergyDTA);
103 if(verboseLevel > 1)
104 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
105 << excitationEnergyDTA << G4endl;
106
107 incidentKineticEnergy -= excitation;
108 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
109 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
110 // *(incidentTotalEnergy+incidentMass));
111 // DHW 19 May 2011: variable set but not used
112
113 G4HEVector targetParticle;
114 if(G4UniformRand() < atomicNumber/atomicWeight) {
115 targetParticle.setDefinition("Proton");
116 } else {
117 targetParticle.setDefinition("Neutron");
118 }
119
120 G4double targetMass = targetParticle.getMass();
121 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
122 + targetMass*targetMass
123 + 2.0*targetMass*incidentTotalEnergy);
124 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
125
126 G4bool inElastic = true;
127 vecLength = 0;
128
129 if(verboseLevel > 1)
130 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
131 << incidentCode << G4endl;
132
133 G4bool successful = false;
134
135 // Split K0L into K0 and K0bar
136 if (G4UniformRand() < 0.5)
137 FirstIntInCasAntiKaonZero(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle );
139 else
140 FirstIntInCasKaonZero(inElastic, availableEnergy, pv, vecLength,
141 incidentParticle, targetParticle, atomicWeight );
142
143 // Do nuclear interaction with either K0 or K0bar
144 if ((vecLength > 0) && (availableEnergy > 1.))
145 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
146 pv, vecLength,
147 incidentParticle, targetParticle);
148
149 HighEnergyCascading(successful, pv, vecLength,
150 excitationEnergyGNP, excitationEnergyDTA,
151 incidentParticle, targetParticle,
152 atomicWeight, atomicNumber);
153 if (!successful)
155 excitationEnergyGNP, excitationEnergyDTA,
156 incidentParticle, targetParticle,
157 atomicWeight, atomicNumber);
158 if (!successful)
159 MediumEnergyCascading(successful, pv, vecLength,
160 excitationEnergyGNP, excitationEnergyDTA,
161 incidentParticle, targetParticle,
162 atomicWeight, atomicNumber);
163
164 if (!successful)
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
169 if (!successful)
170 QuasiElasticScattering(successful, pv, vecLength,
171 excitationEnergyGNP, excitationEnergyDTA,
172 incidentParticle, targetParticle,
173 atomicWeight, atomicNumber);
174
175 if (!successful)
176 ElasticScattering(successful, pv, vecLength,
177 incidentParticle,
178 atomicWeight, atomicNumber);
179
180 if (!successful)
181 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
182 << G4endl;
183
184 // Check for K0, K0bar and change particle types to K0L, K0S if necessary
185 G4int kcode;
186 for (G4int i = 0; i < vecLength; i++) {
187 kcode = pv[i].getCode();
188 if (kcode == KaonZero.getCode() || kcode == AntiKaonZero.getCode()) {
189 if (G4UniformRand() < 0.5)
190 pv[i] = KaonZeroShort;
191 else
192 pv[i] = KaonZeroLong;
193 }
194 }
195
196 // ................
197
199 delete [] pv;
201 return &theParticleChange;
202}
203
204
205void
207 const G4double availableEnergy,
208 G4HEVector pv[],
209 G4int& vecLen,
210 const G4HEVector& incidentParticle,
211 const G4HEVector& targetParticle,
212 const G4double atomicWeight)
213
214// Kaon0 undergoes interaction with nucleon within a nucleus. Check if it is
215// energetically possible to produce pions/kaons. In not, assume nuclear excitation
216// occurs and input particle is degraded in energy. No other particles are produced.
217// If reaction is possible, find the correct number of pions/protons/neutrons
218// produced using an interpolation to multiplicity data. Replace some pions or
219// protons/neutrons by kaons or strange baryons according to the average
220// multiplicity per inelastic reaction.
221{
222 static const G4double expxu = 82.; // upper bound for arg. of exp
223 static const G4double expxl = -expxu; // lower bound for arg. of exp
224
225 static const G4double protb = 0.7;
226 static const G4double neutb = 0.7;
227 static const G4double c = 1.25;
228
229 static const G4int numMul = 1200;
230 static const G4int numSec = 60;
231
233 G4int protonCode = Proton.getCode();
234
235 G4int targetCode = targetParticle.getCode();
236 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
237
238 static G4bool first = true;
239 static G4double protmul[numMul], protnorm[numSec]; // proton constants
240 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
241
242 // misc. local variables
243 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
244
245 G4int i, counter, nt, npos, nneg, nzero;
246
247 if (first) {
248 // compute normalization constants, this will only be done once
249 first = false;
250 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
251 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
252 counter = -1;
253 for (npos=0; npos<(numSec/3); npos++) {
254 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
255 for (nzero=0; nzero<numSec/3; nzero++) {
256 if (++counter < numMul) {
257 nt = npos+nneg+nzero;
258 if( (nt>0) && (nt<=numSec) ) {
259 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c) ;
260 protnorm[nt-1] += protmul[counter];
261 }
262 }
263 }
264 }
265 }
266
267 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
268 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
269 counter = -1;
270 for (npos=0; npos<numSec/3; npos++) {
271 for (nneg=npos; nneg<=(npos+2); nneg++) {
272 for (nzero=0; nzero<numSec/3; nzero++) {
273 if (++counter < numMul) {
274 nt = npos+nneg+nzero;
275 if( (nt>0) && (nt<=numSec) ) {
276 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
277 neutnorm[nt-1] += neutmul[counter];
278 }
279 }
280 }
281 }
282 }
283
284 for (i=0; i<numSec; i++) {
285 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
286 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
287 }
288 } // end of initialization
289
290
291 // Initialize the first two particles
292 // the same as beam and target
293 pv[0] = incidentParticle;
294 pv[1] = targetParticle;
295 vecLen = 2;
296
297 if( !inElastic ) {
298 // quasi-elastic scattering, no pions produced
299 if( targetCode == protonCode) {
300 G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
301 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*5. ) );
302 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42)) {
303 // charge exchange K+ n -> K0 p
304 pv[0] = KaonPlus;
305 pv[1] = Neutron;
306 }
307 }
308 return;
309 } else if (availableEnergy <= PionPlus.getMass()) {
310 return;
311 }
312
313 // Inelastic scattering
314
315 npos = 0, nneg = 0, nzero = 0;
316 G4double eab = availableEnergy;
317 G4int ieab = G4int( eab*5.0 );
318
319 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
320 if( (ieab <= 9) && (G4UniformRand() >= supp[ieab])) {
321 // Suppress high multiplicity events at low momentum
322 // only one additional pion will be produced
323 G4double w0, wp, wm, wt, ran;
324 if (targetCode == neutronCode) {
325 // target is a neutron
326 w0 = - sqr(1.+protb)/(2.*c*c);
327 w0 = std::exp(w0);
328 wm = - sqr(-1.+protb)/(2.*c*c);
329 wm = std::exp(wm);
330 w0 = w0/2.;
331 wm = wm*1.5;
332 if (G4UniformRand() < w0/(w0+wm) ) {
333 npos = 0;
334 nneg = 0;
335 nzero = 1;
336 } else {
337 npos = 0;
338 nneg = 1;
339 nzero = 0;
340 }
341
342 } else {
343 // target is a proton
344 w0 = -sqr(1.+neutb)/(2.*c*c);
345 wp = w0 = std::exp(w0);
346 wm = -sqr(-1.+neutb)/(2.*c*c);
347 wm = std::exp(wm);
348 wt = w0+wp+wm;
349 wp = w0+wp;
350 ran = G4UniformRand();
351 if ( ran < w0/wt) {
352 npos = 0;
353 nneg = 0;
354 nzero = 1;
355 } else if (ran < wp/wt) {
356 npos = 1;
357 nneg = 0;
358 nzero = 0;
359 } else {
360 npos = 0;
361 nneg = 1;
362 nzero = 0;
363 }
364 }
365 } else {
366 // number of total particles vs. centre of mass Energy - 2*proton mass
367
368 G4double aleab = std::log(availableEnergy);
369 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
370 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
371
372 // Normalization constant for kno-distribution.
373 // Calculate first the sum of all constants, check for numerical problems.
374 G4double test, dum, anpn = 0.0;
375
376 for (nt=1; nt<=numSec; nt++) {
377 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
378 dum = pi*nt/(2.0*n*n);
379 if (std::fabs(dum) < 1.0) {
380 if( test >= 1.0e-10 )anpn += dum*test;
381 } else {
382 anpn += dum*test;
383 }
384 }
385
386 G4double ran = G4UniformRand();
387 G4double excs = 0.0;
388 if( targetCode == protonCode )
389 {
390 counter = -1;
391 for( npos=0; npos<numSec/3; npos++ )
392 {
393 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
394 {
395 for (nzero=0; nzero<numSec/3; nzero++) {
396 if (++counter < numMul) {
397 nt = npos+nneg+nzero;
398 if ( (nt>0) && (nt<=numSec) ) {
399 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
400 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
401 if (std::fabs(dum) < 1.0) {
402 if( test >= 1.0e-10 )excs += dum*test;
403 } else {
404 excs += dum*test;
405 }
406 if (ran < excs) goto outOfLoop; //----------------------->
407 }
408 }
409 }
410 }
411 }
412
413 // 3 previous loops continued to the end
414 inElastic = false; // quasi-elastic scattering
415 return;
416 }
417 else
418 { // target must be a neutron
419 counter = -1;
420 for( npos=0; npos<numSec/3; npos++ )
421 {
422 for( nneg=npos; nneg<=(npos+2); nneg++ )
423 {
424 for (nzero=0; nzero<numSec/3; nzero++) {
425 if (++counter < numMul) {
426 nt = npos+nneg+nzero;
427 if ( (nt>=1) && (nt<=numSec) ) {
428 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
429 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
430 if (std::fabs(dum) < 1.0) {
431 if( test >= 1.0e-10 )excs += dum*test;
432 } else {
433 excs += dum*test;
434 }
435 if (ran < excs) goto outOfLoop; // -------------------------->
436 }
437 }
438 }
439 }
440 }
441 // 3 previous loops continued to the end
442 inElastic = false; // quasi-elastic scattering.
443 return;
444 }
445 }
446 outOfLoop: // <-----------------------------------------------
447
448 if( targetCode == neutronCode)
449 {
450 if( npos == nneg)
451 {
452 }
453 else if (npos == (nneg-1))
454 {
455 if( G4UniformRand() < 0.5)
456 {
457 pv[0] = KaonPlus;
458 }
459 else
460 {
461 pv[1] = Proton;
462 }
463 }
464 else
465 {
466 pv[0] = KaonPlus;
467 pv[1] = Proton;
468 }
469 }
470 else
471 {
472 if( npos == nneg )
473 {
474 if( G4UniformRand() < 0.25)
475 {
476 pv[0] = KaonPlus;
477 pv[1] = Neutron;
478 }
479 else
480 {
481 }
482 }
483 else if ( npos == (nneg+1))
484 {
485 pv[1] = Neutron;
486 }
487 else
488 {
489 pv[0] = KaonPlus;
490 }
491 }
492
493 nt = npos + nneg + nzero;
494 while (nt > 0) {
495 G4double ran = G4UniformRand();
496 if (ran < (G4double)npos/nt) {
497 if (npos > 0) {
498 pv[vecLen++] = PionPlus;
499 npos--;
500 }
501 } else if ( ran < (G4double)(npos+nneg)/nt) {
502 if (nneg > 0) {
503 pv[vecLen++] = PionMinus;
504 nneg--;
505 }
506 } else {
507 if (nzero > 0) {
508 pv[vecLen++] = PionZero;
509 nzero--;
510 }
511 }
512 nt = npos + nneg + nzero;
513 }
514
515 if (verboseLevel > 1) {
516 G4cout << "Particles produced: " ;
517 G4cout << pv[0].getName() << " " ;
518 G4cout << pv[1].getName() << " " ;
519 for (i=2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
520 G4cout << G4endl;
521 }
522
523 return;
524}
525
526
527void
529 const G4double availableEnergy,
530 G4HEVector pv[],
531 G4int& vecLen,
532 const G4HEVector& incidentParticle,
533 const G4HEVector& targetParticle)
534
535// AntiKaon0 undergoes interaction with nucleon within a nucleus. Check if it is
536// energetically possible to produce pions/kaons. In not, assume nuclear excitation
537// occurs and input particle is degraded in energy. No other particles are produced.
538// If reaction is possible, find the correct number of pions/protons/neutrons
539// produced using an interpolation to multiplicity data. Replace some pions or
540// protons/neutrons by kaons or strange baryons according to the average
541// multiplicity per inelastic reaction.
542{
543 static const G4double expxu = 82.; // upper bound for arg. of exp
544 static const G4double expxl = -expxu; // lower bound for arg. of exp
545
546 static const G4double protb = 0.7;
547 static const G4double neutb = 0.7;
548 static const G4double c = 1.25;
549
550 static const G4int numMul = 1200;
551 static const G4int numSec = 60;
552
554 G4int protonCode = Proton.getCode();
555 G4int kaonMinusCode = KaonMinus.getCode();
556 G4int kaonZeroCode = KaonZero.getCode();
557 G4int antiKaonZeroCode = AntiKaonZero.getCode();
558
559 G4int targetCode = targetParticle.getCode();
560 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
561
562 static G4bool first = true;
563 static G4double protmul[numMul], protnorm[numSec]; // proton constants
564 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
565
566 // misc. local variables
567 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
568
569 G4int i, counter, nt, npos, nneg, nzero;
570
571 if (first) {
572 // compute normalization constants, this will only be done once
573 first = false;
574 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
575 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
576 counter = -1;
577 for(npos=0; npos<(numSec/3); npos++) {
578 for(nneg=std::max(0,npos-2); nneg<=npos; nneg++) {
579 for(nzero=0; nzero<numSec/3; nzero++) {
580 if(++counter < numMul) {
581 nt = npos+nneg+nzero;
582 if( (nt>0) && (nt<=numSec) ) {
583 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c) ;
584 protnorm[nt-1] += protmul[counter];
585 }
586 }
587 }
588 }
589 }
590
591 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
592 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
593 counter = -1;
594 for(npos=0; npos<numSec/3; npos++) {
595 for(nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
596 for(nzero=0; nzero<numSec/3; nzero++) {
597 if(++counter < numMul) {
598 nt = npos+nneg+nzero;
599 if( (nt>0) && (nt<=numSec) ) {
600 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
601 neutnorm[nt-1] += neutmul[counter];
602 }
603 }
604 }
605 }
606 }
607
608 for(i=0; i<numSec; i++) {
609 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
610 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
611 }
612 } // end of initialization
613
614 // initialize the first two particles
615 // the same as beam and target
616 pv[0] = incidentParticle;
617 pv[1] = targetParticle;
618 vecLen = 2;
619
620 if (!inElastic || (availableEnergy <= PionPlus.getMass()))
621 return;
622
623 // Inelastic scattering
624
625 npos = 0, nneg = 0, nzero = 0;
626 G4double cech[] = { 1., 1., 1., 0.70, 0.60, 0.55, 0.35, 0.25, 0.18, 0.15};
627 G4int iplab = G4int( incidentTotalMomentum*5.);
628 if( (iplab < 10) && (G4UniformRand() < cech[iplab]) ) {
629 G4int ipl = std::min(19, G4int( incidentTotalMomentum*5.));
630 G4double cnk0[] = {0.17, 0.18, 0.17, 0.24, 0.26, 0.20, 0.22, 0.21, 0.34, 0.45,
631 0.58, 0.55, 0.36, 0.29, 0.29, 0.32, 0.32, 0.33, 0.33, 0.33};
632 if(G4UniformRand() < cnk0[ipl]) {
633 if(targetCode == protonCode) {
634 return;
635 } else {
636 pv[0] = KaonMinus;
637 pv[1] = Proton;
638 return;
639 }
640 }
641
642 G4double ran = G4UniformRand();
643 if(targetCode == protonCode) {
644
645 // target is a proton
646 if( ran < 0.25 ) {
647 ;
648 } else if (ran < 0.50) {
649 pv[0] = PionPlus;
650 pv[1] = SigmaZero;
651 } else if (ran < 0.75) {
652 ;
653 } else {
654 pv[0] = PionPlus;
655 pv[1] = Lambda;
656 }
657 } else {
658
659 // target is a neutron
660 if( ran < 0.25 ) {
661 pv[0] = PionMinus;
662 pv[1] = SigmaPlus;
663 } else if (ran < 0.50) {
664 pv[0] = PionZero;
665 pv[1] = SigmaZero;
666 } else if (ran < 0.75) {
667 pv[0] = PionPlus;
668 pv[1] = SigmaMinus;
669 } else {
670 pv[0] = PionZero;
671 pv[1] = Lambda;
672 }
673 }
674 return;
675
676 } else {
677 // number of total particles vs. centre of mass Energy - 2*proton mass
678
679 G4double aleab = std::log(availableEnergy);
680 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
681 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
682
683 // Normalization constant for kno-distribution.
684 // Calculate first the sum of all constants, check for numerical problems.
685 G4double test, dum, anpn = 0.0;
686
687 for (nt=1; nt<=numSec; nt++) {
688 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
689 dum = pi*nt/(2.0*n*n);
690 if (std::fabs(dum) < 1.0) {
691 if( test >= 1.0e-10 )anpn += dum*test;
692 } else {
693 anpn += dum*test;
694 }
695 }
696
697 G4double ran = G4UniformRand();
698 G4double excs = 0.0;
699 if (targetCode == protonCode) {
700 counter = -1;
701 for (npos=0; npos<numSec/3; npos++) {
702 for (nneg=std::max(0,npos-2); nneg<=npos; nneg++) {
703 for (nzero=0; nzero<numSec/3; nzero++) {
704 if (++counter < numMul) {
705 nt = npos+nneg+nzero;
706 if( (nt>0) && (nt<=numSec) ) {
707 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
708 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
709
710 if (std::fabs(dum) < 1.0) {
711 if( test >= 1.0e-10 )excs += dum*test;
712 } else {
713 excs += dum*test;
714 }
715
716 if (ran < excs) goto outOfLoop; //----------------------->
717 }
718 }
719 }
720 }
721 }
722 // 3 previous loops continued to the end
723 inElastic = false; // quasi-elastic scattering
724 return;
725
726 } else { // target must be a neutron
727 counter = -1;
728 for (npos=0; npos<numSec/3; npos++) {
729 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
730 for (nzero=0; nzero<numSec/3; nzero++) {
731 if (++counter < numMul) {
732 nt = npos+nneg+nzero;
733 if( (nt>=1) && (nt<=numSec) ) {
734 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
735 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
736
737 if (std::fabs(dum) < 1.0) {
738 if( test >= 1.0e-10 )excs += dum*test;
739 } else {
740 excs += dum*test;
741 }
742
743 if (ran < excs) goto outOfLoop; // -------------------------->
744 }
745 }
746 }
747 }
748 }
749 // 3 previous loops continued to the end
750 inElastic = false; // quasi-elastic scattering.
751 return;
752 }
753 }
754 outOfLoop: // <------------------------------------------------------------------------
755
756 if( targetCode == protonCode)
757 {
758 if( npos == nneg)
759 {
760 }
761 else if (npos == (1+nneg))
762 {
763 if( G4UniformRand() < 0.5)
764 {
765 pv[0] = KaonMinus;
766 }
767 else
768 {
769 pv[1] = Neutron;
770 }
771 }
772 else
773 {
774 pv[0] = KaonMinus;
775 pv[1] = Neutron;
776 }
777 }
778 else
779 {
780 if( npos == nneg)
781 {
782 if( G4UniformRand() < 0.75)
783 {
784 }
785 else
786 {
787 pv[0] = KaonMinus;
788 pv[1] = Proton;
789 }
790 }
791 else if ( npos == (1+nneg))
792 {
793 pv[0] = KaonMinus;
794 }
795 else
796 {
797 pv[1] = Proton;
798 }
799 }
800
801
802 if( G4UniformRand() < 0.5 )
803 {
804 if( ( (pv[0].getCode() == kaonMinusCode)
805 && (pv[1].getCode() == neutronCode) )
806 || ( (pv[0].getCode() == kaonZeroCode)
807 && (pv[1].getCode() == protonCode) )
808 || ( (pv[0].getCode() == antiKaonZeroCode)
809 && (pv[1].getCode() == protonCode) ) )
810 {
811 G4double ran = G4UniformRand();
812 if( pv[1].getCode() == protonCode)
813 {
814 if(ran < 0.68)
815 {
816 pv[0] = PionPlus;
817 pv[1] = Lambda;
818 }
819 else if (ran < 0.84)
820 {
821 pv[0] = PionZero;
822 pv[1] = SigmaPlus;
823 }
824 else
825 {
826 pv[0] = PionPlus;
827 pv[1] = SigmaZero;
828 }
829 }
830 else
831 {
832 if(ran < 0.68)
833 {
834 pv[0] = PionMinus;
835 pv[1] = Lambda;
836 }
837 else if (ran < 0.84)
838 {
839 pv[0] = PionMinus;
840 pv[1] = SigmaZero;
841 }
842 else
843 {
844 pv[0] = PionZero;
845 pv[1] = SigmaMinus;
846 }
847 }
848 }
849 else
850 {
851 G4double ran = G4UniformRand();
852 if (ran < 0.67)
853 {
854 pv[0] = PionZero;
855 pv[1] = Lambda;
856 }
857 else if (ran < 0.78)
858 {
859 pv[0] = PionMinus;
860 pv[1] = SigmaPlus;
861 }
862 else if (ran < 0.89)
863 {
864 pv[0] = PionZero;
865 pv[1] = SigmaZero;
866 }
867 else
868 {
869 pv[0] = PionPlus;
870 pv[1] = SigmaMinus;
871 }
872 }
873 }
874
875 nt = npos + nneg + nzero;
876 while ( nt > 0) {
877 G4double ran = G4UniformRand();
878 if ( ran < (G4double)npos/nt) {
879 if( npos > 0 ) {
880 pv[vecLen++] = PionPlus;
881 npos--;
882 }
883 } else if (ran < (G4double)(npos+nneg)/nt) {
884 if( nneg > 0 ) {
885 pv[vecLen++] = PionMinus;
886 nneg--;
887 }
888 } else {
889 if( nzero > 0 ) {
890 pv[vecLen++] = PionZero;
891 nzero--;
892 }
893 }
894 nt = npos + nneg + nzero;
895 }
896
897 if (verboseLevel > 1) {
898 G4cout << "Particles produced: " ;
899 G4cout << pv[0].getName() << " " ;
900 G4cout << pv[1].getName() << " " ;
901 for (i=2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
902 G4cout << G4endl;
903 }
904
905 return;
906}
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4HEVector KaonPlus
G4HEVector KaonZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
G4HEVector SigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector KaonZeroLong
G4HEVector SigmaMinus
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector KaonMinus
G4HEVector Proton
G4HEVector AntiKaonZero
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
G4HEVector KaonZeroShort
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void FirstIntInCasAntiKaonZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
virtual void ModelDescription(std::ostream &) const
void FirstIntInCasKaonZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
T sqr(const T &x)
Definition: templates.hh:145