Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ICRU73QOModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4ICRU73QOModel
34//
35// Author: Alexander Bagulya
36//
37// Creation date: 21.05.2010
38//
39// Modifications:
40//
41//
42// -------------------------------------------------------------------
43//
44
45
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
48
49#include "G4ICRU73QOModel.hh"
51#include "G4SystemOfUnits.hh"
52#include "Randomize.hh"
53#include "G4Electron.hh"
55#include "G4LossTableManager.hh"
56#include "G4AntiProton.hh"
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
59
60using namespace std;
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
63
65 : G4VEmModel(nam),
66 particle(0),
67 isInitialised(false)
68{
69 mass = charge = chargeSquare = massRate = ratio = 0.0;
70 if(p) { SetParticle(p); }
71 SetHighEnergyLimit(10.0*MeV);
72
73 lowestKinEnergy = 5.0*keV;
74
75 sizeL0 = 67;
76 sizeL1 = 22;
77 sizeL2 = 14;
78
79 theElectron = G4Electron::Electron();
80
81 for (G4int i = 0; i < 100; ++i)
82 {
83 indexZ[i] = -1;
84 }
85 for(G4int i = 0; i < NQOELEM; ++i)
86 {
87 if(ZElementAvailable[i] > 0) {
88 indexZ[ZElementAvailable[i]] = i;
89 }
90 }
91 fParticleChange = 0;
92 denEffData = 0;
93}
94
95//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
96
98{}
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
101
103 const G4DataVector&)
104{
105 if(p != particle) SetParticle(p);
106
107 // always false before the run
108 SetDeexcitationFlag(false);
109
110 if(!isInitialised) {
111 isInitialised = true;
112
113 G4String pname = particle->GetParticleName();
114 fParticleChange = GetParticleChangeForLoss();
116 denEffData = (*mtab)[0]->GetIonisation()->GetDensityEffectData();
117 }
118}
119
120//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121
123 const G4ParticleDefinition* p,
124 G4double kineticEnergy,
125 G4double cutEnergy,
126 G4double maxKinEnergy)
127{
128 G4double cross = 0.0;
129 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
130 G4double maxEnergy = std::min(tmax,maxKinEnergy);
131 if(cutEnergy < maxEnergy) {
132
133 G4double energy = kineticEnergy + mass;
134 G4double energy2 = energy*energy;
135 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
136 cross = 1.0/cutEnergy - 1.0/maxEnergy - beta2*log(maxEnergy/cutEnergy)/tmax;
137
138 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2;
139 }
140
141 return cross;
142}
143
144//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
145
147 const G4ParticleDefinition* p,
148 G4double kineticEnergy,
150 G4double cutEnergy,
151 G4double maxEnergy)
152{
154 (p,kineticEnergy,cutEnergy,maxEnergy);
155 return cross;
156}
157
158//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
159
161 const G4Material* material,
162 const G4ParticleDefinition* p,
163 G4double kineticEnergy,
164 G4double cutEnergy,
165 G4double maxEnergy)
166{
167 G4double eDensity = material->GetElectronDensity();
169 (p,kineticEnergy,cutEnergy,maxEnergy);
170 return cross;
171}
172
173//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
174
176 const G4ParticleDefinition* p,
177 G4double kineticEnergy,
178 G4double cutEnergy)
179{
180 SetParticle(p);
181 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
182 G4double tkin = kineticEnergy/massRate;
183 G4double dedx = 0.0;
184 if(tkin > lowestKinEnergy) { dedx = DEDX(material, tkin); }
185 else { dedx = DEDX(material, lowestKinEnergy)*sqrt(tkin/lowestKinEnergy); }
186
187 if (cutEnergy < tmax) {
188
189 G4double tau = kineticEnergy/mass;
190 G4double gam = tau + 1.0;
191 G4double bg2 = tau * (tau+2.0);
192 G4double beta2 = bg2/(gam*gam);
193 G4double x = cutEnergy/tmax;
194
195 dedx += chargeSquare*( log(x) + (1.0 - x)*beta2 ) * twopi_mc2_rcl2
196 * material->GetElectronDensity()/beta2;
197 }
198 if(dedx < 0.0) { dedx = 0.0; }
199 return dedx;
200}
201
202//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
203
204G4double G4ICRU73QOModel::DEDX(const G4Material* material,
205 G4double kineticEnergy)
206{
207 G4double eloss = 0.0;
208 const G4int numberOfElements = material->GetNumberOfElements();
209 const G4double* theAtomicNumDensityVector =
210 material->GetAtomicNumDensityVector();
211
212 // Bragg's rule calculation
213 const G4ElementVector* theElementVector =
214 material->GetElementVector() ;
215
216 // loop for the elements in the material
217 for (G4int i=0; i<numberOfElements; ++i)
218 {
219 const G4Element* element = (*theElementVector)[i] ;
220 eloss += DEDXPerElement(G4int(element->GetZ()), kineticEnergy)
221 * theAtomicNumDensityVector[i] * G4int(element->GetZ());
222 }
223 return eloss;
224}
225
226//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
227
228G4double G4ICRU73QOModel::DEDXPerElement(G4int AtomicNumber,
229 G4double kineticEnergy)
230{
231 G4int Z = AtomicNumber;
232 if(Z > 97) { Z = 97; }
233 G4int nbOfShells = GetNumberOfShells(Z);
234 if(nbOfShells < 1) { nbOfShells = 1; }
235
236 G4double v = CLHEP::c_light * std::sqrt( 2.0*kineticEnergy/proton_mass_c2 );
237
238 G4double fBetheVelocity = CLHEP::fine_structure_const*CLHEP::c_light/v;
239
240 G4double tau = kineticEnergy/proton_mass_c2;
241 G4double gam = tau + 1.0;
242 G4double bg2 = tau * (tau+2.0);
243 G4double beta2 = bg2/(gam*gam);
244
245 G4double l0Term = 0, l1Term = 0, l2Term = 0;
246
247 for (G4int nos = 0; nos < nbOfShells; ++nos){
248
249 G4double NormalizedEnergy = (2.0*CLHEP::electron_mass_c2*beta2) /
250 GetShellEnergy(Z,nos);
251
252 G4double shStrength = GetShellStrength(Z,nos);
253
254 G4double l0 = GetL0(NormalizedEnergy);
255 l0Term += shStrength * l0;
256
257 G4double l1 = GetL1(NormalizedEnergy);
258 l1Term += shStrength * l1;
259
260 G4double l2 = GetL2(NormalizedEnergy);
261 l2Term += shStrength * l2;
262
263 }
264 G4double dedx = 2*CLHEP::twopi_mc2_rcl2*chargeSquare*factorBethe[Z]*
265 (l0Term + charge*fBetheVelocity*l1Term
266 + chargeSquare*fBetheVelocity*fBetheVelocity*l2Term)/beta2;
267 return dedx;
268}
269
270
271//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
272
273G4double G4ICRU73QOModel::GetOscillatorEnergy(G4int Z,
274 G4int nbOfTheShell) const
275{
276 G4int idx = denEffData->GetElementIndex(Z, kStateUndefined);
277 if(idx == -1) { idx = denEffData->GetElementIndex(Z-1, kStateUndefined); }
278 G4double PlasmaEnergy = denEffData->GetPlasmaEnergy(idx);
279
280 G4double PlasmaEnergy2 = PlasmaEnergy * PlasmaEnergy;
281
282 G4double plasmonTerm = 0.66667 * G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell)
283 * PlasmaEnergy2 / (Z*Z) ;
284
285 G4double ionTerm = std::exp(0.5) * (G4AtomicShells::GetBindingEnergy(Z,nbOfTheShell)) ;
286 G4double ionTerm2 = ionTerm*ionTerm ;
287
288 G4double oscShellEnergy = std::sqrt( ionTerm2 + plasmonTerm );
289
290 return oscShellEnergy;
291}
292
293//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
294
295G4double G4ICRU73QOModel::GetL0(G4double normEnergy) const
296{
297 G4int n;
298
299 for(n = 0; n < sizeL0; n++) {
300 if( normEnergy < L0[n][0] ) break;
301 }
302 if(0 == n) { n = 1; }
303 if(n >= sizeL0) { n = sizeL0 - 1; }
304
305 G4double l0 = L0[n][1];
306 G4double l0p = L0[n-1][1];
307 G4double bethe = l0p + (l0 - l0p) * ( normEnergy - L0[n-1][0]) /
308 (L0[n][0] - L0[n-1][0]);
309
310 return bethe ;
311}
312
313//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
314
315G4double G4ICRU73QOModel::GetL1(G4double normEnergy) const
316{
317 G4int n;
318
319 for(n = 0; n < sizeL1; n++) {
320 if( normEnergy < L1[n][0] ) break;
321 }
322 if(0 == n) n = 1 ;
323 if(n >= sizeL1) n = sizeL1 - 1 ;
324
325 G4double l1 = L1[n][1];
326 G4double l1p = L1[n-1][1];
327 G4double barkas= l1p + (l1 - l1p) * ( normEnergy - L1[n-1][0]) /
328 (L1[n][0] - L1[n-1][0]);
329
330 return barkas;
331}
332
333//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
334
335G4double G4ICRU73QOModel::GetL2(G4double normEnergy) const
336{
337 G4int n;
338 for(n = 0; n < sizeL2; n++) {
339 if( normEnergy < L2[n][0] ) break;
340 }
341 if(0 == n) n = 1 ;
342 if(n >= sizeL2) n = sizeL2 - 1 ;
343
344 G4double l2 = L2[n][1];
345 G4double l2p = L2[n-1][1];
346 G4double bloch = l2p + (l2 - l2p) * ( normEnergy - L2[n-1][0]) /
347 (L2[n][0] - L2[n-1][0]);
348
349 return bloch;
350}
351
352//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
353
355 const G4DynamicParticle*,
356 G4double&,
357 G4double&,
358 G4double)
359{}
360
361//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
362
363void G4ICRU73QOModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
365 const G4DynamicParticle* dp,
366 G4double xmin,
367 G4double maxEnergy)
368{
370 G4double xmax = std::min(tmax, maxEnergy);
371 if(xmin >= xmax) { return; }
372
373 G4double kineticEnergy = dp->GetKineticEnergy();
374 G4double energy = kineticEnergy + mass;
375 G4double energy2 = energy*energy;
376 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
377 G4double grej = 1.0;
378 G4double deltaKinEnergy, f;
379
380 G4ThreeVector direction = dp->GetMomentumDirection();
381
382 // sampling follows ...
383 do {
385 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - x) + xmax*x);
386
387 f = 1.0 - beta2*deltaKinEnergy/tmax;
388
389 if(f > grej) {
390 G4cout << "G4ICRU73QOModel::SampleSecondary Warning! "
391 << "Majorant " << grej << " < "
392 << f << " for e= " << deltaKinEnergy
393 << G4endl;
394 }
395
396 } while( grej*G4UniformRand() >= f );
397
398 G4double deltaMomentum =
399 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
400 G4double totMomentum = energy*sqrt(beta2);
401 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
402 (deltaMomentum * totMomentum);
403 if(cost > 1.0) { cost = 1.0; }
404 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
405
406 G4double phi = twopi * G4UniformRand() ;
407
408 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ;
409 deltaDirection.rotateUz(direction);
410
411 // Change kinematics of primary particle
412 kineticEnergy -= deltaKinEnergy;
413 G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum;
414 finalP = finalP.unit();
415
416 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
417 fParticleChange->SetProposedMomentumDirection(finalP);
418
419 // create G4DynamicParticle object for delta ray
420 G4DynamicParticle* delta = new G4DynamicParticle(theElectron,deltaDirection,
421 deltaKinEnergy);
422
423 vdp->push_back(delta);
424}
425
426//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
427
429 G4double kinEnergy)
430{
431 if(pd != particle) { SetParticle(pd); }
432 G4double tau = kinEnergy/mass;
433 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) /
434 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio);
435 return tmax;
436}
437
438//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
439
440const G4int G4ICRU73QOModel::ZElementAvailable[NQOELEM] = {1,2,4,6,7,8,10,13,14,-18,
441 22,26,28,29,32,36,42,47,
442 50,54,73,74,78,79,82,92};
443
444const G4int G4ICRU73QOModel::nbofShellsForElement[NQOELEM] = {1,1,2,3,3,3,3,4,5,4,
445 5,5,5,5,6,4,6,6,
446 7,6,6,8,7,7,9,9};
447
448const G4int G4ICRU73QOModel::startElemIndex[NQOELEM] = {0,1,2,4,7,10,13,16,20,25,
449 29,34,39,44,49,55,59,65,
450 71,78,84,90,98,105,112,121};
451
452//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
453
454// SubShellOccupation = Z * ShellStrength
455const G4double G4ICRU73QOModel::SubShellOccupation[NQODATA] =
456 {
457 1.000, // H 0
458 2.000, // He 1
459 1.930, 2.070, // Be 2-3
460 1.992, 1.841, 2.167, // C 4-6
461 1.741, 1.680, 3.579, // N 7-9
462 1.802, 1.849, 4.349, // O 10-12
463 1.788, 2.028, 6.184, // Ne 13-15
464 1.623, 2.147, 6.259, 2.971, // Al 16-19
465 1.631, 2.094, 6.588, 2.041, 1.646, // Si 20-24
466 1.535, 8.655, 1.706, 6.104, // Ar 25-28
467 1.581, 8.358, 8.183, 2.000, 1.878, // Ti 29-33
468 1.516, 8.325, 8.461, 6.579, 1.119, // Fe 34-38
469 1.422, 7.81, 8.385, 8.216, 2.167, // Ni 39-43
470 1.458, 8.049, 8.79, 9.695, 1.008, // Cu 44-48
471 1.442, 7.791, 7.837, 10.122, 2.463, 2.345, // Ge 49-54
472 1.645, 7.765, 19.192, 7.398, // Kr 55-58
473 1.313, 6.409, 19.229, 8.633, 5.036, 1.380, // Mo 59-64
474 1.295, 6.219, 18.751, 8.748, 10.184, 1.803, // Ag 65-70
475 1.277, 6.099, 20.386, 8.011, 10.007, 2.272, 1.948, // Sn 71-77
476 1.563, 6.312, 21.868, 5.762, 11.245, 7.250, // Xe 78-83
477 0.9198, 6.5408, 18.9727, 24.9149, 15.0161, 6.6284, // Ta 84-89
478 1.202, 5.582, 19.527, 18.741, 8.411, 14.387, 4.042, 2.108, // W 90-97
479 1.159, 5.467, 18.802, 33.905, 8.300, 9.342, 1.025, // Pt 98-104
480 1.124, 5.331, 18.078, 34.604, 8.127, 10.414, 1.322, // Au 105-111
481 2.000, 8.000, 18.000, 18.000, 14.000, 8.000, 10.000, 2.000, 2.000, // Pb 112-120
482 2.000, 8.000, 18.000, 32.000, 18.000, 8.000, 2.000, 1.000, 3.000 // U 121-129
483};
484
485//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
486
487// ShellEnergy in eV
488const G4double G4ICRU73QOModel::ShellEnergy[NQODATA] =
489 {
490 19.2, // H
491 41.8, // He
492 209.11, 21.68, // Be
493 486.2, 60.95, 23.43, // C
494 732.61, 100.646, 23.550, // N
495 965.1, 129.85, 31.60, // O
496 1525.9, 234.9, 56.18, // Ne
497 2701, 476.5, 150.42, 16.89, // Al
498 3206.1, 586.4, 186.8, 23.52, 14.91, // Si
499 5551.6, 472.43, 124.85, 22.332, // Ar
500 8554.6, 850.58, 93.47, 39.19, 19.46, // Ti
501 12254.7, 1279.29, 200.35, 49.19, 17.66, // Fe
502 14346.9, 1532.28, 262.71, 74.37, 23.03, // Ni
503 15438.5, 1667.96, 294.1, 70.69, 16.447, // Cu
504 19022.1, 2150.79, 455.79, 179.87, 57.89, 20.95, // Ge
505 24643, 2906.4, 366.85, 22.24, // Kr
506 34394, 4365.3, 589.36, 129.42, 35.59, 18.42, // Mo
507 43664.3, 5824.91, 909.79, 175.47, 54.89, 19.63, // Ag
508 49948, 6818.2, 1036.1, 172.65, 70.89, 33.87, 14.54, // Sn
509 58987, 8159, 1296.6, 356.75, 101.03, 16.52, // Xe
510 88926, 18012, 3210, 575, 108.7, 30.8, // Ta
511 115025.9, 17827.44, 3214.36, 750.41, 305.21, 105.50, 38.09, 21.25, // W
512 128342, 20254, 3601.8, 608.1, 115.0, 42.75, 17.04, // Pt
513 131872, 20903, 3757.4, 682.1, 105.2, 44.89, 17.575, // Au
514 154449, 25067, 5105.0, 987.44, 247.59, 188.1, 40.61, 19.2, 15.17, // Pb
515 167282, 27868, 6022.7, 1020.4, 244.81, 51.33, 13, 11.06, 14.43 // U
516};
517
518//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
519
520// Data for L0 from: Sigmund P., Haagerup U. Phys. Rev. A34 (1986) 892-910
521const G4double G4ICRU73QOModel::L0[67][2] =
522{
523 {0.00, 0.000001},
524 {0.10, 0.000001},
525 {0.12, 0.00001},
526 {0.14, 0.00005},
527 {0.16, 0.00014},
528 {0.18, 0.00030},
529 {0.20, 0.00057},
530 {0.25, 0.00189},
531 {0.30, 0.00429},
532 {0.35, 0.00784},
533 {0.40, 0.01248},
534 {0.45, 0.01811},
535 {0.50, 0.02462},
536 {0.60, 0.03980},
537 {0.70, 0.05731},
538 {0.80, 0.07662},
539 {0.90, 0.09733},
540 {1.00, 0.11916},
541 {1.20, 0.16532},
542 {1.40, 0.21376},
543 {1.60, 0.26362},
544 {1.80, 0.31428},
545 {2.00, 0.36532},
546 {2.50, 0.49272},
547 {3.00, 0.61765},
548 {3.50, 0.73863},
549 {4.00, 0.85496},
550 {4.50, 0.96634},
551 {5.00, 1.07272},
552 {6.00, 1.27086},
553 {7.00, 1.45075},
554 {8.00, 1.61412},
555 {9.00, 1.76277},
556 {10.00, 1.89836},
557 {12.00, 2.13625},
558 {14.00, 2.33787},
559 {16.00, 2.51093},
560 {18.00, 2.66134},
561 {20.00, 2.79358},
562 {25.00, 3.06539},
563 {30.00, 3.27902},
564 {35.00, 3.45430},
565 {40.00, 3.60281},
566 {45.00, 3.73167},
567 {50.00, 3.84555},
568 {60.00, 4.04011},
569 {70.00, 4.20264},
570 {80.00, 4.34229},
571 {90.00, 4.46474},
572 {100.00, 4.57378},
573 {120.00, 4.76155},
574 {140.00, 4.91953},
575 {160.00, 5.05590},
576 {180.00, 5.17588},
577 {200.00, 5.28299},
578 {250.00, 5.50925},
579 {300.00, 5.69364},
580 {350.00, 5.84926},
581 {400.00, 5.98388},
582 {450.00, 6.10252},
583 {500.00, 6.20856},
584 {600.00, 6.39189},
585 {700.00, 6.54677},
586 {800.00, 6.68084},
587 {900.00, 6.79905},
588 {1000.00, 6.90474}
589};
590
591//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
592
593// Data for L1 from: Mikkelsen H.H., Sigmund P. Phys. Rev. A40 (1989) 101-116
594const G4double G4ICRU73QOModel::L1[22][2] =
595{
596 {0.00, -0.000001},
597 {0.10, -0.00001},
598 {0.20, -0.00049},
599 {0.30, -0.00084},
600 {0.40, 0.00085},
601 {0.50, 0.00519},
602 {0.60, 0.01198},
603 {0.70, 0.02074},
604 {0.80, 0.03133},
605 {0.90, 0.04369},
606 {1.00, 0.06035},
607 {2.00, 0.24023},
608 {3.00, 0.44284},
609 {4.00, 0.62012},
610 {5.00, 0.77031},
611 {6.00, 0.90390},
612 {7.00, 1.02705},
613 {8.00, 1.10867},
614 {9.00, 1.17546},
615 {10.00, 1.21599},
616 {15.00, 1.24349},
617 {20.00, 1.16752}
618};
619
620//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
621
622// Data for L2 from: Mikkelsen H.H. Nucl. Instr. Meth. B58 (1991) 136-148
623const G4double G4ICRU73QOModel::L2[14][2] =
624{
625 {0.00, 0.000001},
626 {0.10, 0.00001},
627 {0.20, 0.00000},
628 {0.40, -0.00120},
629 {0.60, -0.00036},
630 {0.80, 0.00372},
631 {1.00, 0.01298},
632 {2.00, 0.08296},
633 {4.00, 0.21953},
634 {6.00, 0.23903},
635 {8.00, 0.20893},
636 {10.00, 0.10879},
637 {20.00, -0.88409},
638 {40.00, -1.13902}
639};
640
641//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
642
643// Correction obtained by V.Ivanchenko using G4BetheBlochModel
644const G4double G4ICRU73QOModel::factorBethe[99] = { 1.0,
6450.9637, 0.9872, 0.9469, 0.9875, 0.91, 0.989, 0.9507, 0.9773, 0.8621, 0.979, // 1 - 10
6460.8357, 0.868, 0.9417, 0.9466, 0.8911, 0.905, 0.944, 0.9607, 0.928, 0.96, // 11 - 20
6470.9098, 0.976, 0.8425, 0.8099, 0.7858, 0.947, 0.7248, 0.9106, 0.9246, 0.6821, // 21 - 30
6480.7223, 0.9784, 0.774, 0.7953, 0.829, 0.9405, 0.8318, 0.8583, 0.8563, 0.8481, // 31 - 40
6490.8207, 0.9033, 0.8063, 0.7837, 0.7818, 0.744, 0.875, 0.7693, 0.7871, 0.8459, // 41 - 50
6500.8231, 0.8462, 0.853, 0.8736, 0.856, 0.8762, 0.8629, 0.8323, 0.8064, 0.7828, // 51 - 60
6510.7533, 0.7273, 0.7093, 0.7157, 0.6823, 0.6612, 0.6418, 0.6395, 0.6323, 0.6221, // 61 - 70
6520.6497, 0.6746, 0.8568, 0.8541, 0.6958, 0.6962, 0.7051, 0.863, 0.8588, 0.7226, // 71 - 80
6530.7454, 0.78, 0.7783, 0.7996, 0.8216, 0.8632, 0.8558, 0.8792, 0.8745, 0.8676, // 81 - 90
6540.8321, 0.8272, 0.7999, 0.7934, 0.7787, 0.7851, 0.7692, 0.7598};
std::vector< G4Element * > G4ElementVector
std::vector< G4Material * > G4MaterialTable
@ kStateUndefined
Definition: G4Material.hh:114
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
static G4double GetBindingEnergy(G4int Z, G4int SubshellNb)
G4double GetPlasmaEnergy(G4int idx)
G4int GetElementIndex(G4int Z, G4State mState)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetZ() const
Definition: G4Element.hh:131
virtual ~G4ICRU73QOModel()
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double)
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy)
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
virtual void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
G4ICRU73QOModel(const G4ParticleDefinition *p=0, const G4String &nam="ICRU73QO")
static const G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:562
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
G4double GetElectronDensity() const
Definition: G4Material.hh:216
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:641
G4double MaxSecondaryKinEnergy(const G4DynamicParticle *dynParticle)
Definition: G4VEmModel.hh:399
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:95