Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QCaptureAtRest.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// ---------------- G4QCaptureAtRest header ----------------
29// by Mikhail Kossov, December 2003.
30// Header of G4QCaptureAtRest class of the CHIPS Simulation Branch in GEANT4
31// -------------------------------------------------------------------------------
32// At present (May 2009) only pi-, K- and antiNucleon capture are tested, which
33// are the most crucial for the in matter simulation. The hyperon capture (Sigma-,
34// Xi-, Omega-, antiSigma+) is implemented, but not tested and it is not clear how
35// frequently this kind of interaction takes place in the simulation of the hadronic
36// showers. The antiNeutron Capture At Rest is implemented by this G4QCaptureAtRest
37// class, but it is not clear how the anti-neutrons are stopped in Geant4 tracking.
38// It can be stopped only by interactions with electrons, as the annihilation cross
39// section is huge and any interaction with nucleus results in annihilation. The
40// mu- & tau- Capture At Rest (mu-,nu) & (mu-,nu) are weak processes, which must
41// be simulated together with the reversed Betha decay (e-,nu). While mu- capture is
42// similar to the pi- capture from the nuclear fragmentation point of view (the energy
43// scale is shrinked because m_mu < m_pi and a part of the energy is lost because of
44// the neutrino radiation), the time scale of the mu- capture process is not exact,
45// but it is clear, that it is well delayed. By this reason the mu- capture can be
46// excluded from the G4QCaptureAtRest and can be implemented in the "LongLivingDecay"
47// branch of simulation, which includes excited states of nuclei and short living
48// isotopes. On the "Fast Simulation" Level all radioactive isotopes, long living
49// nuclear excitations, mu-atoms etc, which can be important for the background
50// signals, must be collected in the continuous database and simulated separately.
51// CHIPS is SU(3) event generator, so it does not include reactions with the heavy
52// (c,b,t) quarks involved such as antiDs-, which can be simulated only by SU(6)
53// QUIPS (QUark Invariant Phase Space) model. - May 2009, M.Kossov.-
54// -------------------------------------------------------------------------------
55// All algorithms are similar: the captured particle is absorbed by a nuclear cluster
56// with the subsequent Quark Exchange nuclear fragmentation. The Anti-Proton (antiSigma+)
57// Capture algorithm is more complicated: the anti-baryon annihilates with the quasyfree
58// nucleons on the nuclear periphery. The peripheral interaction results in a number
59// of mesons. A part of them misses the nucleus and comes directly to the output,
60// while others create Multy Quasmon Excitation in the nucleus with the subsequent
61// Quark Excange Fragmentation of the nucleus. At present the two step mechanism of
62// the antiProton-Nucleus interaction is hardwired in the G4QEnvironment class, but
63// with time the first step of the interaction can be moved to this G4QCaptureAtRest
64// class, to make the G4QEnvirement class simpler and better defined. This is
65// necessary because the G4QEnvironment class is going to loos the previlage of
66// the CHIPS Head Class (as previously the G4Quasmon class lost it) and G4QCollision
67// class is going to be the CHIPS Head Class, where a few Nuclear Environments can
68// exist (e.g. the Nuclear Environment of the Projectile Nucleus and the Nuclear
69// Environment of the Target Nucleus). By the way, the antiProton-H1 interaction At
70// Rest (CHIPSI) can be still simulated with only the G4Quasmon class, as this
71// reaction does not have any nuclear environment.- May 2009, Mikhail Kossov.-
72// --------------------------------------------------------------------------------
73// ****************************************************************************************
74// This Header is a part of the CHIPS physics package (author: M. Kosov)
75// ****************************************************************************************
76// Short Description: This is a universal process for nuclear capture
77// (including annihilation) of all negative particles (cold neutrons, negative
78// hadrons, negative leptons: mu- & tau-). It can be used for the cold neutron
79// capture, but somebody should decide what is the probability (defined
80// by the capture cross-section and atomic material properties) to switch
81// the cold neutron to the at-rest neutron. - M.K. 2009.
82// ----------------------------------------------------------------------
83
84#ifndef G4QCaptureAtRest_hh
85#define G4QCaptureAtRest_hh
86
87// GEANT4 Headers
88#include "globals.hh"
89#include "G4ios.hh"
90#include "G4VRestProcess.hh"
91#include "G4ParticleTypes.hh"
92#include "G4VParticleChange.hh"
94#include "G4DynamicParticle.hh"
95#include "Randomize.hh"
96#include "G4ThreeVector.hh"
97#include "G4LorentzVector.hh"
98#include "G4RandomDirection.hh"
99
100// CHIPS Headers
101#include "G4QEnvironment.hh"
102#include "G4QIsotope.hh"
103#include "G4QPDGToG4Particle.hh"
104
106{
107private:
108
109 // Hide assignment operator as private
110 G4QCaptureAtRest& operator=(const G4QCaptureAtRest &right);
111
112 // Copy constructor
114
115public:
116
117 // Constructor
118 G4QCaptureAtRest(const G4String& processName ="CHIPSNuclearCaptureAtRest");
119
120 // Destructor
121 virtual ~G4QCaptureAtRest();
122
123 virtual G4bool IsApplicable(const G4ParticleDefinition& particle);
124
125 G4VParticleChange* AtRestDoIt(const G4Track& aTrack, const G4Step& aStep);
126
128
130
131 // Static functions
132 static void SetManual();
133 static void SetStandard();
134 static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
135 G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
136 G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
137 G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
138
139protected:
140
141 // zero mean lifetime
143 G4double RandomizeDecayElectron(G4int Z); // Randomize energy of decay electron (in MeV)
144private:
145
146 G4bool RandomizeMuDecayOrCapture(G4int Z, G4int N); // true=MuCapture, false=MuDecay
147 void CalculateEnergyDepositionOfMuCapture(G4int Z); // (2p->1s, MeV) @@ Now N-independent
148 G4bool RandomizeTauDecayOrCapture(G4int Z, G4int N);// true=TauCapture, false=TauDecay
149 void CalculateEnergyDepositionOfTauCapture(G4int Z);// (2p->1s, MeV) @@N-independ,Improve
150
151// BODY
152private:
153 // Static Parameters
154 static G4bool manualFlag; // If false then standard parameters are used
155 static G4int nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
156 // -> Parameters of the G4Quasmon class:
157 static G4double Temperature; // Quasmon Temperature
158 static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
159 static G4double EtaEtaprime; // Part of eta-prime in all etas
160 // -> Parameters of the G4QNucleus class:
161 static G4double freeNuc; // probability of the quasi-free baryon on surface
162 static G4double freeDib; // probability of the quasi-free dibaryon on surface
163 static G4double clustProb; // clusterization probability in dense region
164 static G4double mediRatio; // relative vacuum hadronization probability
165 // -> Parameters of the G4QEnvironment class:
166 static G4bool EnergyFlux; // Flag for Energy Flux use instead of Multy Quasmon
167 static G4double SolidAngle; // Part of Solid Angle to capture secondaries(@@A-dep)
168 static G4double PiPrThresh; // Pion Production Threshold for gammas
169 static G4double M2ShiftVir; // Shift for M2=-Q2=m_pi^2 of the virtual gamma
170 static G4double DiNuclMass; // Double Nucleon Mass for virtual normalization
171 //
172 // Working parameters
173 G4LorentzVector EnMomConservation; // Residual of Energy/Momentum Cons.
174 G4int nOfNeutrons; // #of neutrons in the target nucleus
175 // Modifires for the reaction
176 G4double Time; // Time shift of the capture reaction
177 G4double EnergyDeposition; // Energy deposited in the reaction
178
179};
180#endif
G4ForceCondition
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4int GetNumberOfNeutronsInTarget()
G4VParticleChange * AtRestDoIt(const G4Track &aTrack, const G4Step &aStep)
virtual ~G4QCaptureAtRest()
static void SetStandard()
static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3, G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1., G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false, G4double piTh=141.4, G4double mpi2=20000., G4double dinum=1880.)
G4LorentzVector GetEnegryMomentumConservation()
G4double GetMeanLifeTime(const G4Track &aTrack, G4ForceCondition *)
virtual G4bool IsApplicable(const G4ParticleDefinition &particle)
static void SetManual()
G4double RandomizeDecayElectron(G4int Z)
Definition: G4Step.hh:78