Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEAntiXiZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEAntiXiZeroInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEAntiXiZeroInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "anti-Xi0 scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to anti-Xi0 with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 G4int incidentCode = incidentParticle.getCode();
70 G4double incidentMass = incidentParticle.getMass();
71 G4double incidentTotalEnergy = incidentParticle.getEnergy();
72
73 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
74 // DHW 19 May 2011: variable set but not used
75
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77
78 if (incidentKineticEnergy < 1.)
79 G4cout << "GHEAntiXiZeroInelastic: incident energy < 1 GeV" << G4endl;
80
81 if (verboseLevel > 1) {
82 G4cout << "G4HEAntiXiZeroInelastic::ApplyYourself" << G4endl;
83 G4cout << "incident particle " << incidentParticle.getName()
84 << "mass " << incidentMass
85 << "kinetic energy " << incidentKineticEnergy
86 << G4endl;
87 G4cout << "target material with (A,Z) = ("
88 << atomicWeight << "," << atomicNumber << ")" << G4endl;
89 }
90
91 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
92 atomicWeight, atomicNumber);
93 if (verboseLevel > 1)
94 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
95
96 incidentKineticEnergy -= inelasticity;
97
98 G4double excitationEnergyGNP = 0.;
99 G4double excitationEnergyDTA = 0.;
100
101 G4double excitation = NuclearExcitation(incidentKineticEnergy,
102 atomicWeight, atomicNumber,
103 excitationEnergyGNP,
104 excitationEnergyDTA);
105 if (verboseLevel > 1)
106 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA << G4endl;
108
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
111 // incidentTotalMomentum = std::sqrt((incidentTotalEnergy-incidentMass)
112 // *(incidentTotalEnergy+incidentMass));
113 // DHW 19 May 2011: variable set but not used
114
115 G4HEVector targetParticle;
116 if (G4UniformRand() < atomicNumber/atomicWeight) {
117 targetParticle.setDefinition("Proton");
118 } else {
119 targetParticle.setDefinition("Neutron");
120 }
121
122 G4double targetMass = targetParticle.getMass();
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
127
128 G4bool inElastic = true;
129 vecLength = 0;
130
131 if (verboseLevel > 1)
132 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode << G4endl;
134
135 G4bool successful = false;
136
137 FirstIntInCasAntiXiZero(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle, atomicWeight);
139
140 if (verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143 if ((vecLength > 0) && (availableEnergy > 1.))
144 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
145 pv, vecLength,
146 incidentParticle, targetParticle);
147
148 HighEnergyCascading(successful, pv, vecLength,
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
152 if (!successful)
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
157 if (!successful)
158 MediumEnergyCascading(successful, pv, vecLength,
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
162
163 if (!successful)
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 QuasiElasticScattering(successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173 if (!successful)
174 ElasticScattering(successful, pv, vecLength,
175 incidentParticle,
176 atomicWeight, atomicNumber);
177 if (!successful)
178 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
179 << G4endl;
180
182 delete [] pv;
184 return &theParticleChange;
185}
186
187
188void
190 const G4double availableEnergy,
191 G4HEVector pv[],
192 G4int& vecLen,
193 const G4HEVector& incidentParticle,
194 const G4HEVector& targetParticle,
195 const G4double atomicWeight)
196
197// AntiXi0 undergoes interaction with nucleon within a nucleus.
198// As in Geant3, we think that this routine has absolutely no influence
199// on the whole performance of the program. Take AntiLambda instaed.
200// ( decay Xi0 -> L Pi > 99 % )
201{
202 static const G4double expxu = 82.; // upper bound for arg. of exp
203 static const G4double expxl = -expxu; // lower bound for arg. of exp
204
205 static const G4double protb = 0.7;
206 static const G4double neutb = 0.7;
207 static const G4double c = 1.25;
208
209 static const G4int numMul = 1200;
210 static const G4int numMulAn = 400;
211 static const G4int numSec = 60;
212
213 G4int protonCode = Proton.getCode();
214
215 G4int targetCode = targetParticle.getCode();
216 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
217
218 static G4bool first = true;
219 static G4double protmul[numMul], protnorm[numSec]; // proton constants
220 static G4double protmulAn[numMulAn],protnormAn[numSec];
221 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
222 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
223
224 // misc. local variables
225 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
226
227 G4int i, counter, nt, npos, nneg, nzero;
228
229 if( first )
230 { // compute normalization constants, this will only be done once
231 first = false;
232 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
233 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
234 counter = -1;
235 for( npos=0; npos<(numSec/3); npos++ )
236 {
237 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
238 {
239 for( nzero=0; nzero<numSec/3; nzero++ )
240 {
241 if( ++counter < numMul )
242 {
243 nt = npos+nneg+nzero;
244 if( (nt>0) && (nt<=numSec) )
245 {
246 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
247 protnorm[nt-1] += protmul[counter];
248 }
249 }
250 }
251 }
252 }
253 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
254 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
255 counter = -1;
256 for( npos=0; npos<numSec/3; npos++ )
257 {
258 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
259 {
260 for( nzero=0; nzero<numSec/3; nzero++ )
261 {
262 if( ++counter < numMul )
263 {
264 nt = npos+nneg+nzero;
265 if( (nt>0) && (nt<=numSec) )
266 {
267 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
268 neutnorm[nt-1] += neutmul[counter];
269 }
270 }
271 }
272 }
273 }
274 for( i=0; i<numSec; i++ )
275 {
276 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
277 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
278 }
279 // annihilation
280 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
281 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
282 counter = -1;
283 for( npos=1; npos<(numSec/3); npos++ )
284 {
285 nneg = std::max(0,npos-1);
286 for( nzero=0; nzero<numSec/3; nzero++ )
287 {
288 if( ++counter < numMulAn )
289 {
290 nt = npos+nneg+nzero;
291 if( (nt>1) && (nt<=numSec) )
292 {
293 protmulAn[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
294 protnormAn[nt-1] += protmulAn[counter];
295 }
296 }
297 }
298 }
299 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
300 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
301 counter = -1;
302 for( npos=0; npos<numSec/3; npos++ )
303 {
304 nneg = npos;
305 for( nzero=0; nzero<numSec/3; nzero++ )
306 {
307 if( ++counter < numMulAn )
308 {
309 nt = npos+nneg+nzero;
310 if( (nt>1) && (nt<=numSec) )
311 {
312 neutmulAn[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
313 neutnormAn[nt-1] += neutmulAn[counter];
314 }
315 }
316 }
317 }
318 for( i=0; i<numSec; i++ )
319 {
320 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
321 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
322 }
323 } // end of initialization
324
325
326 // initialize the first two places
327 // the same as beam and target
328 pv[0] = incidentParticle;
329 pv[1] = targetParticle;
330 vecLen = 2;
331
332 if( !inElastic )
333 { // some two-body reactions
334 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
335
336 G4int iplab = std::min(9, G4int( incidentTotalMomentum*2.5 ));
337 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
338 {
339 G4double ran = G4UniformRand();
340
341 if ( targetCode == protonCode)
342 {
343 if(ran < 0.2)
344 {
345 pv[0] = AntiSigmaZero;
346 }
347 else if (ran < 0.4)
348 {
349 pv[0] = AntiSigmaMinus;
350 pv[1] = Neutron;
351 }
352 else if (ran < 0.6)
353 {
354 pv[0] = Proton;
355 pv[1] = AntiLambda;
356 }
357 else if (ran < 0.8)
358 {
359 pv[0] = Proton;
360 pv[1] = AntiSigmaZero;
361 }
362 else
363 {
364 pv[0] = Neutron;
365 pv[1] = AntiSigmaMinus;
366 }
367 }
368 else
369 {
370 if (ran < 0.2)
371 {
372 pv[0] = AntiSigmaZero;
373 }
374 else if (ran < 0.4)
375 {
376 pv[0] = AntiSigmaPlus;
377 pv[1] = Proton;
378 }
379 else if (ran < 0.6)
380 {
381 pv[0] = Neutron;
382 pv[1] = AntiLambda;
383 }
384 else if (ran < 0.8)
385 {
386 pv[0] = Neutron;
387 pv[1] = AntiSigmaZero;
388 }
389 else
390 {
391 pv[0] = Proton;
392 pv[1] = AntiSigmaPlus;
393 }
394 }
395 }
396 return;
397 }
398 else if (availableEnergy <= PionPlus.getMass())
399 return;
400
401 // inelastic scattering
402
403 npos = 0; nneg = 0; nzero = 0;
404 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
405 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
406 0.39, 0.36, 0.33, 0.10, 0.01};
407 G4int iplab = G4int( incidentTotalMomentum*10.);
408 if ( iplab > 9) iplab = 10 + G4int( (incidentTotalMomentum -1.)*5. );
409 if ( iplab > 14) iplab = 15 + G4int( incidentTotalMomentum -2. );
410 if ( iplab > 22) iplab = 23 + G4int( (incidentTotalMomentum -10.)/10.);
411 iplab = std::min(24, iplab);
412
413 if ( G4UniformRand() > anhl[iplab] )
414 { // non- annihilation channels
415
416 // number of total particles vs. centre of mass Energy - 2*proton mass
417
418 G4double aleab = std::log(availableEnergy);
419 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
420 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
421
422 // normalization constant for kno-distribution.
423 // calculate first the sum of all constants, check for numerical problems.
424 G4double test, dum, anpn = 0.0;
425
426 for (nt=1; nt<=numSec; nt++) {
427 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
428 dum = pi*nt/(2.0*n*n);
429 if (std::fabs(dum) < 1.0) {
430 if( test >= 1.0e-10 )anpn += dum*test;
431 } else {
432 anpn += dum*test;
433 }
434 }
435
436 G4double ran = G4UniformRand();
437 G4double excs = 0.0;
438 if( targetCode == protonCode )
439 {
440 counter = -1;
441 for( npos=0; npos<numSec/3; npos++ )
442 {
443 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
444 {
445 for( nzero=0; nzero<numSec/3; nzero++ )
446 {
447 if( ++counter < numMul )
448 {
449 nt = npos+nneg+nzero;
450 if ( (nt>0) && (nt<=numSec) ) {
451 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
452 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
453 if (std::fabs(dum) < 1.0) {
454 if( test >= 1.0e-10 )excs += dum*test;
455 } else {
456 excs += dum*test;
457 }
458
459 if (ran < excs) goto outOfLoop; //----------------------->
460 }
461 }
462 }
463 }
464 }
465
466 // 3 previous loops continued to the end
467 inElastic = false; // quasi-elastic scattering
468 return;
469 }
470 else
471 { // target must be a neutron
472 counter = -1;
473 for( npos=0; npos<numSec/3; npos++ )
474 {
475 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
476 {
477 for( nzero=0; nzero<numSec/3; nzero++ )
478 {
479 if( ++counter < numMul )
480 {
481 nt = npos+nneg+nzero;
482 if ( (nt>0) && (nt<=numSec) ) {
483 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
484 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
485 if (std::fabs(dum) < 1.0) {
486 if( test >= 1.0e-10 )excs += dum*test;
487 } else {
488 excs += dum*test;
489 }
490
491 if (ran < excs) goto outOfLoop; // -------------------------->
492 }
493 }
494 }
495 }
496 }
497 // 3 previous loops continued to the end
498 inElastic = false; // quasi-elastic scattering.
499 return;
500 }
501
502 outOfLoop: // <------------------------------------------------------------------------
503
504 ran = G4UniformRand();
505
506 if( targetCode == protonCode)
507 {
508 if( npos == nneg)
509 {
510 if (ran < 0.40)
511 {
512 }
513 else if (ran < 0.8)
514 {
515 pv[0] = AntiSigmaZero;
516 }
517 else
518 {
519 pv[0] = AntiSigmaMinus;
520 pv[1] = Neutron;
521 }
522 }
523 else if (npos == (nneg+1))
524 {
525 if( ran < 0.25)
526 {
527 pv[1] = Neutron;
528 }
529 else if (ran < 0.5)
530 {
531 pv[0] = AntiSigmaZero;
532 pv[1] = Neutron;
533 }
534 else
535 {
536 pv[0] = AntiSigmaPlus;
537 }
538 }
539 else if (npos == (nneg-1))
540 {
541 pv[0] = AntiSigmaMinus;
542 }
543 else
544 {
545 pv[0] = AntiSigmaPlus;
546 pv[1] = Neutron;
547 }
548 }
549 else
550 {
551 if( npos == nneg)
552 {
553 if (ran < 0.4)
554 {
555 }
556 else if(ran < 0.8)
557 {
558 pv[0] = AntiSigmaZero;
559 }
560 else
561 {
562 pv[0] = AntiSigmaPlus;
563 pv[1] = Proton;
564 }
565 }
566 else if ( npos == (nneg-1))
567 {
568 if (ran < 0.5)
569 {
570 pv[0] = AntiSigmaMinus;
571 }
572 else if (ran < 0.75)
573 {
574 pv[1] = Proton;
575 }
576 else
577 {
578 pv[0] = AntiSigmaZero;
579 pv[1] = Proton;
580 }
581 }
582 else if (npos == (nneg+1))
583 {
584 pv[0] = AntiSigmaPlus;
585 }
586 else
587 {
588 pv[0] = AntiSigmaMinus;
589 pv[1] = Proton;
590 }
591 }
592
593 }
594 else // annihilation
595 {
596 if ( availableEnergy > 2. * PionPlus.getMass() )
597 {
598
599 G4double aleab = std::log(availableEnergy);
600 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
601 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
602
603 // normalization constant for kno-distribution.
604 // calculate first the sum of all constants, check for numerical problems.
605 G4double test, dum, anpn = 0.0;
606
607 for (nt=2; nt<=numSec; nt++) {
608 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
609 dum = pi*nt/(2.0*n*n);
610 if (std::fabs(dum) < 1.0) {
611 if( test >= 1.0e-10 )anpn += dum*test;
612 } else {
613 anpn += dum*test;
614 }
615 }
616
617 G4double ran = G4UniformRand();
618 G4double excs = 0.0;
619 if( targetCode == protonCode )
620 {
621 counter = -1;
622 for( npos=1; npos<numSec/3; npos++ )
623 {
624 nneg = npos-1;
625 for( nzero=0; nzero<numSec/3; nzero++ )
626 {
627 if( ++counter < numMulAn )
628 {
629 nt = npos+nneg+nzero;
630 if ( (nt>1) && (nt<=numSec) ) {
631 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
632 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
633 if (std::fabs(dum) < 1.0) {
634 if( test >= 1.0e-10 )excs += dum*test;
635 } else {
636 excs += dum*test;
637 }
638
639 if (ran < excs) goto outOfLoopAn; //----------------------->
640 }
641 }
642 }
643 }
644 // 3 previous loops continued to the end
645 inElastic = false; // quasi-elastic scattering
646 return;
647 }
648 else
649 { // target must be a neutron
650 counter = -1;
651 for( npos=0; npos<numSec/3; npos++ )
652 {
653 nneg = npos;
654 for( nzero=0; nzero<numSec/3; nzero++ )
655 {
656 if( ++counter < numMulAn )
657 {
658 nt = npos+nneg+nzero;
659 if ( (nt>1) && (nt<=numSec) ) {
660 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
661 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
662 if (std::fabs(dum) < 1.0) {
663 if( test >= 1.0e-10 )excs += dum*test;
664 } else {
665 excs += dum*test;
666 }
667 if (ran < excs) goto outOfLoopAn; // -------------------------->
668 }
669 }
670 }
671 }
672 inElastic = false; // quasi-elastic scattering.
673 return;
674 }
675 outOfLoopAn: // <------------------------------------------------------------------
676 vecLen = 0;
677 }
678 }
679
680 nt = npos + nneg + nzero;
681 while ( nt > 0)
682 {
683 G4double ran = G4UniformRand();
684 if ( ran < (G4double)npos/nt)
685 {
686 if( npos > 0 )
687 { pv[vecLen++] = PionPlus;
688 npos--;
689 }
690 }
691 else if ( ran < (G4double)(npos+nneg)/nt)
692 {
693 if( nneg > 0 )
694 {
695 pv[vecLen++] = PionMinus;
696 nneg--;
697 }
698 }
699 else
700 {
701 if( nzero > 0 )
702 {
703 pv[vecLen++] = PionZero;
704 nzero--;
705 }
706 }
707 nt = npos + nneg + nzero;
708 }
709 if (verboseLevel > 1)
710 {
711 G4cout << "Particles produced: " ;
712 G4cout << pv[0].getCode() << " " ;
713 G4cout << pv[1].getCode() << " " ;
714 for (i=2; i < vecLen; i++)
715 {
716 G4cout << pv[i].getCode() << " " ;
717 }
718 G4cout << G4endl;
719 }
720 return;
721 }
722
723
724
725
726
727
728
729
730
731
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void FirstIntInCasAntiXiZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4HEVector PionPlus
G4HEVector AntiSigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector AntiSigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector AntiSigmaMinus
G4HEVector AntiLambda
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115