Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EmLivermorePolarizedPhysics Class Reference

#include <G4EmLivermorePolarizedPhysics.hh>

+ Inheritance diagram for G4EmLivermorePolarizedPhysics:

Public Member Functions

 G4EmLivermorePolarizedPhysics (G4int ver=1)
 
 G4EmLivermorePolarizedPhysics (G4int ver, const G4String &)
 
virtual ~G4EmLivermorePolarizedPhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
virtual void ConstructParticle ()=0
 
virtual void ConstructProcess ()=0
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4ParticleTable::G4PTblDicIteratortheParticleIterator
 
G4PhysicsListHelperthePLHelper
 

Detailed Description

Definition at line 36 of file G4EmLivermorePolarizedPhysics.hh.

Constructor & Destructor Documentation

◆ G4EmLivermorePolarizedPhysics() [1/2]

G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver = 1)

Definition at line 126 of file G4EmLivermorePolarizedPhysics.cc.

127 : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
128{
131}
@ bElectromagnetic
static G4LossTableManager * Instance()

◆ G4EmLivermorePolarizedPhysics() [2/2]

G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver,
const G4String  
)

Definition at line 135 of file G4EmLivermorePolarizedPhysics.cc.

136 : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
137{
140}

◆ ~G4EmLivermorePolarizedPhysics()

G4EmLivermorePolarizedPhysics::~G4EmLivermorePolarizedPhysics ( )
virtual

Definition at line 144 of file G4EmLivermorePolarizedPhysics.cc.

145{}

Member Function Documentation

◆ ConstructParticle()

void G4EmLivermorePolarizedPhysics::ConstructParticle ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 149 of file G4EmLivermorePolarizedPhysics.cc.

150{
151// gamma
153
154// leptons
159
160// mesons
165
166// baryons
169
170// ions
173 G4He3::He3();
176}
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:87
static G4He3 * He3()
Definition: G4He3.cc:94
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95

◆ ConstructProcess()

void G4EmLivermorePolarizedPhysics::ConstructProcess ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 180 of file G4EmLivermorePolarizedPhysics.cc.

181{
183
184 // muon & hadron bremsstrahlung and pair production
193
194 // muon & hadron multiple scattering
196 mumsc->AddEmModel(0, new G4WentzelVIModel());
198 pimsc->AddEmModel(0, new G4WentzelVIModel());
200 kmsc->AddEmModel(0, new G4WentzelVIModel());
202 pmsc->AddEmModel(0, new G4WentzelVIModel());
203 G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
204
205 // high energy limit for e+- scattering models
206 G4double highEnergyLimit = 100*MeV;
207
208 // nuclear stopping
209 G4NuclearStopping* ionnuc = new G4NuclearStopping();
211
212 // Add Livermore EM Processes
214
215 while( (*theParticleIterator)() ){
216
218 G4String particleName = particle->GetParticleName();
219
220 if(verbose > 1)
221 G4cout << "### " << GetPhysicsName() << " instantiates for "
222 << particleName << G4endl;
223
224 //Applicability range for Livermore models
225 //for higher energies, the Standard models are used
226 G4double LivermoreHighEnergyLimit = GeV;
227
228 if (particleName == "gamma") {
229
230 G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
232 theLivermorePhotoElectricModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
233 thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel);
234 ph->RegisterProcess(thePhotoElectricEffect, particle);
235
236 G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
238 theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
239 theComptonScattering->AddEmModel(0, theLivermoreComptonModel);
240 ph->RegisterProcess(theComptonScattering, particle);
241
242 G4GammaConversion* theGammaConversion = new G4GammaConversion();
244 theLivermoreGammaConversionModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
245 theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel);
246 ph->RegisterProcess(theGammaConversion, particle);
247
248 G4RayleighScattering* theRayleigh = new G4RayleighScattering();
250 theRayleighModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
251 theRayleigh->AddEmModel(0, theRayleighModel);
252 ph->RegisterProcess(theRayleigh, particle);
253
254 } else if (particleName == "e-") {
255
256 // multiple scattering
261 msc1->SetHighEnergyLimit(highEnergyLimit);
262 msc2->SetLowEnergyLimit(highEnergyLimit);
263 msc->AddEmModel(0, msc1);
264 msc->AddEmModel(0, msc2);
265
268 ss->SetEmModel(ssm, 1);
269 ss->SetMinKinEnergy(highEnergyLimit);
270 ssm->SetLowEnergyLimit(highEnergyLimit);
271 ssm->SetActivationLowEnergyLimit(highEnergyLimit);
272 ph->RegisterProcess(msc, particle);
273 ph->RegisterProcess(ss, particle);
274
275 // Ionisation
276 G4eIonisation* eIoni = new G4eIonisation();
277 G4LivermoreIonisationModel* theIoniLivermore = new
279 theIoniLivermore->SetHighEnergyLimit(0.1*MeV);
280 eIoni->AddEmModel(0, theIoniLivermore, new G4UniversalFluctuation() );
281 eIoni->SetStepFunction(0.2, 100*um); //
282 ph->RegisterProcess(eIoni, particle);
283
284 // Bremsstrahlung from standard
286 ph->RegisterProcess(eBrem, particle);
287
288 } else if (particleName == "e+") {
289
290 // multiple scattering
295 msc1->SetHighEnergyLimit(highEnergyLimit);
296 msc2->SetLowEnergyLimit(highEnergyLimit);
297 msc->AddEmModel(0, msc1);
298 msc->AddEmModel(0, msc2);
299
302 ss->SetEmModel(ssm, 1);
303 ss->SetMinKinEnergy(highEnergyLimit);
304 ssm->SetLowEnergyLimit(highEnergyLimit);
305 ssm->SetActivationLowEnergyLimit(highEnergyLimit);
306
307 // Ionisation
308 G4eIonisation* eIoni = new G4eIonisation();
309 eIoni->SetStepFunction(0.2, 100*um);
310
311 ph->RegisterProcess(msc, particle);
312 ph->RegisterProcess(eIoni, particle);
313 ph->RegisterProcess(new G4eBremsstrahlung(), particle);
314 ph->RegisterProcess(new G4eplusAnnihilation(), particle);
315 ph->RegisterProcess(ss, particle);
316
317 } else if (particleName == "mu+" ||
318 particleName == "mu-" ) {
319
320 G4MuIonisation* muIoni = new G4MuIonisation();
321 muIoni->SetStepFunction(0.2, 50*um);
322
323 ph->RegisterProcess(mumsc, particle);
324 ph->RegisterProcess(muIoni, particle);
325 ph->RegisterProcess(mub, particle);
326 ph->RegisterProcess(mup, particle);
327 ph->RegisterProcess(new G4CoulombScattering(), particle);
328
329 } else if (particleName == "alpha" ||
330 particleName == "He3" ) {
331
332 // Identical to G4EmStandardPhysics_option3
333
335 G4ionIonisation* ionIoni = new G4ionIonisation();
336 ionIoni->SetStepFunction(0.1, 10*um);
337
338 ph->RegisterProcess(msc, particle);
339 ph->RegisterProcess(ionIoni, particle);
340 ph->RegisterProcess(ionnuc, particle);
341
342 } else if (particleName == "GenericIon") {
343
344 // Identical to G4EmStandardPhysics_option3
345
346 G4ionIonisation* ionIoni = new G4ionIonisation();
348 ionIoni->SetStepFunction(0.1, 1*um);
349
350 ph->RegisterProcess(hmsc, particle);
351 ph->RegisterProcess(ionIoni, particle);
352 ph->RegisterProcess(ionnuc, particle);
353
354 } else if (particleName == "pi+" ||
355 particleName == "pi-" ) {
356
357 //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
358 G4hIonisation* hIoni = new G4hIonisation();
359 hIoni->SetStepFunction(0.2, 50*um);
360
361 ph->RegisterProcess(pimsc, particle);
362 ph->RegisterProcess(hIoni, particle);
363 ph->RegisterProcess(pib, particle);
364 ph->RegisterProcess(pip, particle);
365
366 } else if (particleName == "kaon+" ||
367 particleName == "kaon-" ) {
368
369 //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
370 G4hIonisation* hIoni = new G4hIonisation();
371 hIoni->SetStepFunction(0.2, 50*um);
372
373 ph->RegisterProcess(kmsc, particle);
374 ph->RegisterProcess(hIoni, particle);
375 ph->RegisterProcess(kb, particle);
376 ph->RegisterProcess(kp, particle);
377
378 } else if (particleName == "proton" ||
379 particleName == "anti_proton") {
380
381 //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
382 G4hIonisation* hIoni = new G4hIonisation();
383 hIoni->SetStepFunction(0.2, 50*um);
384
385 ph->RegisterProcess(pmsc, particle);
386 ph->RegisterProcess(hIoni, particle);
387 ph->RegisterProcess(pb, particle);
388 ph->RegisterProcess(pp, particle);
389 ph->RegisterProcess(pnuc, particle);
390
391 } else if (particleName == "B+" ||
392 particleName == "B-" ||
393 particleName == "D+" ||
394 particleName == "D-" ||
395 particleName == "Ds+" ||
396 particleName == "Ds-" ||
397 particleName == "anti_He3" ||
398 particleName == "anti_alpha" ||
399 particleName == "anti_deuteron" ||
400 particleName == "anti_lambda_c+" ||
401 particleName == "anti_omega-" ||
402 particleName == "anti_sigma_c+" ||
403 particleName == "anti_sigma_c++" ||
404 particleName == "anti_sigma+" ||
405 particleName == "anti_sigma-" ||
406 particleName == "anti_triton" ||
407 particleName == "anti_xi_c+" ||
408 particleName == "anti_xi-" ||
409 particleName == "deuteron" ||
410 particleName == "lambda_c+" ||
411 particleName == "omega-" ||
412 particleName == "sigma_c+" ||
413 particleName == "sigma_c++" ||
414 particleName == "sigma+" ||
415 particleName == "sigma-" ||
416 particleName == "tau+" ||
417 particleName == "tau-" ||
418 particleName == "triton" ||
419 particleName == "xi_c+" ||
420 particleName == "xi-" ) {
421
422 // Identical to G4EmStandardPhysics_option3
423
424 ph->RegisterProcess(hmsc, particle);
425 ph->RegisterProcess(new G4hIonisation(), particle);
426 ph->RegisterProcess(pnuc, particle);
427 }
428 }
429
430 // Em options
431 //
433 opt.SetVerbose(verbose);
434
435 // Multiple Coulomb scattering
436 //
437 opt.SetPolarAngleLimit(CLHEP::pi);
438
439 // Physics tables
440 //
441
442 opt.SetMinEnergy(100*eV);
443 opt.SetMaxEnergy(10*TeV);
444 opt.SetDEDXBinning(220);
445 opt.SetLambdaBinning(220);
446
447 // Nuclear stopping
448 pnuc->SetMaxKinEnergy(MeV);
449
450 // Ionization
451 //
452 //opt.SetSubCutoff(true);
453
454 // Deexcitation
455 //
458 de->SetFluo(true);
459}
@ fUseDistanceToBoundary
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
void SetMaxEnergy(G4double val)
void SetDEDXBinning(G4int val)
void SetLambdaBinning(G4int val)
void SetPolarAngleLimit(G4double val)
void SetVerbose(G4int val, const G4String &name="all")
void SetMinEnergy(G4double val)
void SetAtomDeexcitation(G4VAtomDeexcitation *)
const G4String & GetParticleName() const
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:606
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=0)
void SetMinKinEnergy(G4double e)
void SetEmModel(G4VEmModel *, G4int index=1)
void SetMaxKinEnergy(G4double e)
void SetEmModel(G4VEmModel *, G4int index=1)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=0)
void SetStepFunction(G4double v1, G4double v2)
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
void SetStepLimitType(G4MscStepLimitType val)
const G4String & GetPhysicsName() const
G4ParticleTable::G4PTblDicIterator * theParticleIterator

The documentation for this class was generated from the following files: