Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PreCompoundHe3.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4PreCompoundHe3
34//
35// Author: V.Lara
36//
37// Modified:
38// 21.08.2008 J. M. Quesada add choice of options
39// 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40// use int Z and A and cleanup
41//
42
43#include "G4PreCompoundHe3.hh"
44#include "G4SystemOfUnits.hh"
45#include "G4He3.hh"
46
48 : G4PreCompoundIon(G4He3::He3(), &theHe3CoulombBarrier)
49{
50 ResidualA = GetRestA();
51 ResidualZ = GetRestZ();
52 theA = GetA();
53 theZ = GetZ();
54 ResidualAthrd = ResidualA13();
55 FragmentAthrd = ResidualAthrd;
56 FragmentA = theA + ResidualA;
57}
58
60{}
61
63{
64 return G4double((N-3)*(P-2)*(N-2)*(P-1)*(N-1)*P)/6.0;
65}
66
68{
69 return 243.0/G4double(A*A);
70}
71
73{
74 G4double rj = 0.0;
75 if(nCharged >=2 && (nParticles-nCharged) >= 1) {
76 G4double denominator = G4double(nParticles*(nParticles-1)*(nParticles-2));
77 rj = G4double(3*nCharged*(nCharged-1)*(nParticles-nCharged))/denominator;
78 }
79 return rj;
80}
81
82////////////////////////////////////////////////////////////////////////////////
83//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
84//OPT=0 Dostrovski's parameterization
85//OPT=1,2 Chatterjee's paramaterization
86//OPT=3,4 Kalbach's parameterization
87//
89{
90 ResidualA = GetRestA();
91 ResidualZ = GetRestZ();
92 theA = GetA();
93 theZ = GetZ();
94 ResidualAthrd = ResidualA13();
95 FragmentA = theA + ResidualA;
96 FragmentAthrd = g4pow->Z13(FragmentA);
97
98 if (OPTxs==0) return GetOpt0( K);
99 else if( OPTxs==1 || OPTxs==2) return GetOpt12( K);
100 else if (OPTxs==3 || OPTxs==4) return GetOpt34( K);
101 else{
102 std::ostringstream errOs;
103 errOs << "BAD He3 CROSS SECTION OPTION !!" <<G4endl;
104 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
105 return 0.;
106 }
107}
108
110{
111 G4double C = 0.0;
112 G4int aZ = theZ + ResidualZ;
113 if (aZ <= 30)
114 {
115 C = 0.10;
116 }
117 else if (aZ <= 50)
118 {
119 C = 0.1 - (aZ - 30)*0.001;
120 }
121 else if (aZ < 70)
122 {
123 C = 0.08 - (aZ - 50)*0.001;
124 }
125 else
126 {
127 C = 0.06;
128 }
129 return 1.0 + C*(4.0/3.0);
130}
131
132//********************* OPT=1,2 : Chatterjee's cross section *****************
133//(fitting to cross section from Bechetti & Greenles OM potential)
134
136{
137 G4double Kc = K;
138
139 // JMQ xsec is set constat above limit of validity
140 if (K > 50*MeV) { Kc = 50*MeV; }
141
142 G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
143
144 G4double p0 = -3.06;
145 G4double p1 = 278.5;
146 G4double p2 = -1389.;
147 G4double landa0 = -0.00535;
148 G4double landa1 = -11.16;
149 G4double mm0 = 555.5;
150 G4double mu1 = 0.40;
151 G4double nu0 = 687.4;
152 G4double nu1 = -476.3;
153 G4double nu2 = 0.509;
154 G4double delta=1.2;
155
156 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
157 p = p0 + p1/Ec + p2/(Ec*Ec);
158 landa = landa0*ResidualA + landa1;
159
160 G4double resmu1 = g4pow->powZ(ResidualA,mu1);
161 mu = mm0*resmu1;
162 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
163 q = landa - nu/(Ec*Ec) - 2*p*Ec;
164 r = mu + 2*nu/Ec + p*(Ec*Ec);
165
166 ji=std::max(Kc,Ec);
167 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
168 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
169
170 if (xs <0.0) {xs=0.0;}
171
172 return xs;
173
174}
175
176// *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
178//c ** 3he from o.m. of gibson et al
179{
180 G4double landa, mu, nu, p , signor(1.),sig;
181 G4double ec,ecsq,xnulam,etest(0.),a;
182 G4double b,ecut,cut,ecut2,geom,elab;
183
184 G4double flow = 1.e-18;
185 G4double spill= 1.e+18;
186
187 G4double p0 = -2.88;
188 G4double p1 = 205.6;
189 G4double p2 = -1487.;
190 G4double landa0 = 0.00459;
191 G4double landa1 = -8.93;
192 G4double mm0 = 611.2;
193 G4double mu1 = 0.35;
194 G4double nu0 = 473.8;
195 G4double nu1 = -468.2;
196 G4double nu2 = -2.225;
197
198 G4double ra=0.80;
199
200 //JMQ 13/02/09 increase of reduced radius to lower the barrier
201 // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
202 ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
203 ecsq = ec * ec;
204 p = p0 + p1/ec + p2/ecsq;
205 landa = landa0*ResidualA + landa1;
206 a = g4pow->powZ(ResidualA,mu1);
207 mu = mm0 * a;
208 nu = a* (nu0+nu1*ec+nu2*ecsq);
209 xnulam = nu / landa;
210 if (xnulam > spill) { xnulam=0.; }
211 if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
212
213 a = -2.*p*ec + landa - nu/ecsq;
214 b = p*ecsq + mu + 2.*nu/ec;
215 ecut = 0.;
216 cut = a*a - 4.*p*b;
217 if (cut > 0.) ecut = std::sqrt(cut);
218 ecut = (ecut-a) / (p+p);
219 ecut2 = ecut;
220 //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
221 // ecut<0 means that there is no cut with energy axis, i.e. xs is set
222 // to 0 bellow minimum
223 // if (cut < 0.) ecut2 = ecut - 2.;
224 if (cut < 0.) { ecut2 = ecut; }
225 elab = K * FragmentA /G4double(ResidualA);
226 sig = 0.;
227
228 if (elab <= ec) { //start for E<Ec
229 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
230 } //end for E<Ec
231 else { //start for E>Ec
232 sig = (landa*elab+mu+nu/elab) * signor;
233 geom = 0.;
234 if (xnulam < flow || elab < etest) { return sig; }
235 geom = std::sqrt(theA*K);
236 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
237 geom = 31.416 * geom * geom;
238 sig = std::max(geom,sig);
239 } //end for E>Ec
240 return sig;
241
242}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
Definition: G4He3.hh:52
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180
virtual G4double FactorialFactor(G4int N, G4int P)
G4double GetOpt12(G4double K)
virtual ~G4PreCompoundHe3()
G4double GetOpt34(G4double K)
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)
virtual G4double CrossSection(G4double ekin)
virtual G4double CoalescenceFactor(G4int A)
virtual G4double GetAlpha()
G4double GetOpt0(G4double ekin)
G4double ResidualA13() const
G4int GetRestZ() const
G4int GetRestA() const