Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussJacobiQ.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// Roots of ortogonal polynoms and corresponding weights are calculated based on
32// iteration method (by bisection Newton algorithm). Constant values for initial
33// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
34// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
35// 10, and 22 .
36//
37// ---------------------------------------------------------------------------
38//
39// Constructor for Gauss-Jacobi integration method.
40//
41// G4GaussJacobiQ( function pFunction,
42// G4double alpha,
43// G4double beta,
44// G4int nJacobi )
45//
46// ----------------------------------------------------------------------------
47//
48// Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
49// from minus unit to plus unit .
50//
51// G4double Integral() const
52
53// ------------------------------- HISTORY -------------------------------------
54//
55// 13.05.97 V.Grichine ([email protected]
56
57#ifndef G4GAUSSJACOBIQ_HH
58#define G4GAUSSJACOBIQ_HH
59
61
63{
64public:
65 // Constructor
66
67 G4GaussJacobiQ( function pFunction,
68 G4double alpha,
69 G4double beta,
70 G4int nJacobi ) ;
71
72 // Methods
73
74 G4double Integral() const ;
75
76private:
77
79 G4GaussJacobiQ& operator=(const G4GaussJacobiQ&);
80};
81
82#endif
G4double(* function)(G4double)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Integral() const