Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussLegendreQ.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// Class for Gauss-Legendre integration method
32// Roots of ortogonal polynoms and corresponding weights are calculated based on
33// iteration method (by bisection Newton algorithm). Constant values for initial
34// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36// 10, and 22 .
37//
38// ------------------------- CONSTRUCTORS: -------------------------------
39//
40// Constructor for GaussLegendre quadrature method. The value nLegendre set the
41// accuracy required, i.e the number of points where the function pFunction will
42// be evaluated during integration. The constructor creates the arrays for
43// abscissas and weights that used in Gauss-Legendre quadrature method.
44// The values a and b are the limits of integration of the pFunction.
45//
46// G4GaussLegendreQ( function pFunction,
47// G4int nLegendre )
48//
49// -------------------------- METHODS: ---------------------------------------
50//
51// Returns the integral of the function to be pointed by fFunction between a and b,
52// by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
53// 2*fNumber Times at interior points in the range of integration. Since the weights
54// and abscissas are, in this case, symmetric around the midpoint of the range of
55// integration, there are actually only fNumber distinct values of each.
56//
57// G4double Integral(G4double a, G4double b) const
58//
59// -----------------------------------------------------------------------
60//
61// Returns the integral of the function to be pointed by fFunction between a and b,
62// by ten point Gauss-Legendre integration: the function is evaluated exactly
63// ten Times at interior points in the range of integration. Since the weights
64// and abscissas are, in this case, symmetric around the midpoint of the range of
65// integration, there are actually only five distinct values of each
66//
67// G4double
68// QuickIntegral(G4double a, G4double b) const
69//
70// ---------------------------------------------------------------------
71//
72// Returns the integral of the function to be pointed by fFunction between a and b,
73// by 96 point Gauss-Legendre integration: the function is evaluated exactly
74// ten Times at interior points in the range of integration. Since the weights
75// and abscissas are, in this case, symmetric around the midpoint of the range of
76// integration, there are actually only five distinct values of each
77//
78// G4double
79// AccurateIntegral(G4double a, G4double b) const
80
81// ------------------------------- HISTORY --------------------------------
82//
83// 13.05.97 V.Grichine ([email protected]
84
85#ifndef G4GAUSSLEGENDREQ_HH
86#define G4GAUSSLEGENDREQ_HH
87
89
91{
92public:
93 explicit G4GaussLegendreQ( function pFunction ) ;
94
95
96 G4GaussLegendreQ( function pFunction,
97 G4int nLegendre ) ;
98
99 // Methods
100
101 G4double Integral(G4double a, G4double b) const ;
102
104
106
107private:
108
110 G4GaussLegendreQ& operator=(const G4GaussLegendreQ&);
111};
112
113#endif
G4double(* function)(G4double)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Integral(G4double a, G4double b) const
G4double QuickIntegral(G4double a, G4double b) const
G4double AccurateIntegral(G4double a, G4double b) const