Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HelixMixedStepper.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// class G4HelixMixedStepper
27//
28// Class description:
29//
30// G4HelixMixedStepper split the Method used for Integration in two:
31//
32// If Stepping Angle ( h / R_curve) < pi/3
33// use Stepper for small step(ClassicalRK4 by default)
34// Else use HelixExplicitEuler Stepper
35//
36// History:
37// Derived from ExactHelicalStepper 18/05/07
38//
39// -------------------------------------------------------------------------
40
43#include "G4ClassicalRK4.hh"
44#include "G4CashKarpRKF45.hh"
45#include "G4SimpleRunge.hh"
48#include "G4HelixSimpleRunge.hh"
50#include "G4ExplicitEuler.hh"
51#include "G4ImplicitEuler.hh"
52#include "G4SimpleHeum.hh"
53#include "G4RKG3_Stepper.hh"
54
55#include "G4ThreeVector.hh"
56#include "G4LineSection.hh"
58 : G4MagHelicalStepper(EqRhs)
59
60{
61 SetVerbose(1); fNumCallsRK4=0; fNumCallsHelix=0;
62 if(!fStepperNumber) fStepperNumber=4;
63 fRK4Stepper = SetupStepper(EqRhs, fStepperNumber);
64}
65
66
68
69 delete(fRK4Stepper);
70 if (fVerbose>0){ PrintCalls();};
71}
73 const G4double dydx[7],
74 G4double Step,
75 G4double yOut[7],
76 G4double yErr[])
77
78{
79
80 //Estimation of the Stepping Angle
81
82 G4ThreeVector Bfld;
83 MagFieldEvaluate(yInput, Bfld);
84
85 G4double Bmag = Bfld.mag();
86 const G4double *pIn = yInput+3;
87 G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]);
88 G4double velocityVal = initVelocity.mag();
89 G4double R_1;
90 G4double Ang_curve;
91
92 R_1=std::abs(GetInverseCurve(velocityVal,Bmag));
93 Ang_curve=R_1*Step;
94 SetAngCurve(Ang_curve);
95 SetCurve(std::abs(1/R_1));
96
97
98 if(Ang_curve<0.33*pi){
99 fNumCallsRK4++;
100 fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr);
101
102
103 }
104 else{
105 fNumCallsHelix++;
106 const G4int nvar = 6 ;
107 G4int i;
108 G4double yTemp[7], yIn[7] ;
109 G4double yTemp2[7];
110 G4ThreeVector Bfld_midpoint;
111 // Saving yInput because yInput and yOut can be aliases for same array
112 for(i=0;i<nvar;i++) yIn[i]=yInput[i];
113
114 G4double h = Step * 0.5;
115 // Do two half steps and full step
116 AdvanceHelix(yIn, Bfld, h, yTemp,yTemp2);
117 MagFieldEvaluate(yTemp, Bfld_midpoint) ;
118 AdvanceHelix(yTemp, Bfld_midpoint, h, yOut);
119 // Error estimation
120 for(i=0;i<nvar;i++) {
121 yErr[i] = yOut[i] - yTemp2[i] ;
122
123 }
124 }
125
126
127
128
129}
130
131void
133 G4ThreeVector Bfld,
134 G4double h,
135 G4double yOut[])
136{
137
138
139 AdvanceHelix(yIn, Bfld, h, yOut);
140
141
142
143}
144
146{
147 // Implementation : must check whether h/R > 2 pi !!
148 // If( h/R < pi) use G4LineSection::DistLine
149 // Else DistChord=R_helix
150 //
151 G4double distChord;
152 G4double Ang_curve=GetAngCurve();
153
154
155 if(Ang_curve<=pi){
156 distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
157 }
158 else
159 if(Ang_curve<twopi){
160 distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
161 }
162 else{
163 distChord=2.*GetRadHelix();
164 }
165
166
167
168 return distChord;
169
170}
171// ---------------------------------------------------------------------------
173{
174 G4cout<<"In HelixMixedStepper::Number of calls to smallStepStepper = "<<fNumCallsRK4
175 <<" and Number of calls to Helix = "<<fNumCallsHelix<<G4endl;
176}
177
178
179
181{
182 G4MagIntegratorStepper* pStepper;
183 if (fVerbose>0)G4cout<<"In G4HelixMixedStepper Stepper for small steps is ";
184 switch ( StepperNumber )
185 {
186 case 0: pStepper = new G4ExplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4ExplicitEuler"<<G4endl; break;
187 case 1: pStepper = new G4ImplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4ImplicitEuler"<<G4endl; break;
188 case 2: pStepper = new G4SimpleRunge( pE ); if (fVerbose>0)G4cout<<"G4SimpleRunge"<<G4endl; break;
189 case 3: pStepper = new G4SimpleHeum( pE ); if (fVerbose>0)G4cout<<"G4SimpleHeum"<<G4endl;break;
190 case 4: pStepper = new G4ClassicalRK4( pE ); if (fVerbose>0)G4cout<<"G4ClassicalRK4"<<G4endl; break;
191 case 5: pStepper = new G4HelixExplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4HelixExplicitEuler"<<G4endl; break;
192 case 6: pStepper = new G4HelixImplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4HelixImplicitEuler"<<G4endl; break;
193 case 7: pStepper = new G4HelixSimpleRunge( pE ); if (fVerbose>0)G4cout<<"G4HelixSimpleRunge"<<G4endl; break;
194 case 8: pStepper = new G4CashKarpRKF45( pE ); if (fVerbose>0)G4cout<<"G4CashKarpRKF45"<<G4endl; break;
195 case 9: pStepper = new G4ExactHelixStepper( pE ); if (fVerbose>0)G4cout<<"G4ExactHelixStepper"<<G4endl; break;
196 case 10: pStepper = new G4RKG3_Stepper( pE ); if (fVerbose>0)G4cout<<"G4RKG3_Stepper"<<G4endl; break;
197
198 default: pStepper = new G4ClassicalRK4( pE );G4cout<<"Default G4ClassicalRK4"<<G4endl; break;
199
200 }
201 return pStepper;
202}
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
double mag() const
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])
void SetVerbose(G4int newvalue)
G4HelixMixedStepper(G4Mag_EqRhs *EqRhs, G4int fStepperNumber=0)
G4double DistChord() const
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
G4MagIntegratorStepper * SetupStepper(G4Mag_EqRhs *EqRhs, G4int StepperName)
void SetCurve(const G4double Curve)
void AdvanceHelix(const G4double yIn[], G4ThreeVector Bfld, G4double h, G4double yHelix[], G4double yHelix2[]=0)
G4double GetRadHelix() const
void MagFieldEvaluate(const G4double y[], G4ThreeVector &Bfield)
G4double GetInverseCurve(const G4double Momentum, const G4double Bmag)
void SetAngCurve(const G4double Ang)
G4double GetAngCurve() const
virtual void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])=0