Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BetaDecayCorrections.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27#include "globals.hh"
29#include "G4BetaDecayType.hh"
31
33 : Z(theZ), A(theA)
34{
35 // alphaZ = fine_structure_const*std::abs(Z);
36 alphaZ = fine_structure_const*Z;
37
38 // Nuclear radius in units of hbar/m_e/c
39 Rnuc = 0.5*fine_structure_const*std::pow(A, 0.33333);
40
41 // Electron screening potential in units of electrom mass
42 V0 = 1.13*fine_structure_const*fine_structure_const
43 *std::pow(std::abs(Z), 1.33333);
44
45 gamma0 = std::sqrt(1. - alphaZ*alphaZ);
46
47 // Coefficients for gamma function with real argument
48 gc[0] = -0.1010678;
49 gc[1] = 0.4245549;
50 gc[2] = -0.6998588;
51 gc[3] = 0.9512363;
52 gc[4] = -0.5748646;
53 gc[5] = 1.0;
54}
55
56
58{
59 // Calculate the relativistic Fermi function. Argument W is the
60 // total electron energy in units of electron mass.
61
62 G4double Wprime;
63 if (Z < 0) {
64 Wprime = W + V0;
65 } else {
66 Wprime = W - V0;
67// if (Wprime < 1.) Wprime = W;
68 if (Wprime <= 1.00001) Wprime = 1.00001;
69 }
70
71 G4double p_e = std::sqrt(Wprime*Wprime - 1.);
72 G4double eta = alphaZ*Wprime/p_e;
73 G4double epieta = std::exp(pi*eta);
74 G4double realGamma = Gamma(2.*gamma0+1);
75 G4double mod2Gamma = ModSquared(gamma0, eta);
76
77 // Fermi function
78 G4double factor1 = 2*(1+gamma0)*mod2Gamma/realGamma/realGamma;
79 G4double factor2 = epieta*std::pow(2*p_e*Rnuc, 2*(gamma0-1) );
80
81 // Electron screening factor
82 G4double factor3 = (Wprime/W)*std::sqrt( (Wprime*Wprime - 1.)/(W*W - 1.) );
83
84 return factor1*factor2*factor3;
85}
86
87
89G4BetaDecayCorrections::ModSquared(const G4double& re, const G4double& im)
90{
91 // Calculate the squared modulus of the Gamma function
92 // with complex argument (re, im) using approximation B
93 // of Wilkinson, Nucl. Instr. & Meth. 82, 122 (1970).
94 // Here, choose N = 1 in Wilkinson's notation for approximation B
95
96 G4double factor1 = std::pow( (1+re)*(1+re) + im*im, re+0.5);
97 G4double factor2 = std::exp(2*im * std::atan(im/(1+re)));
98 G4double factor3 = std::exp(2*(1+re));
99 G4double factor4 = 2.*pi;
100 G4double factor5 = std::exp( (1+re)/( (1+re)*(1+re) + im*im)/6 );
101 G4double factor6 = re*re + im*im;
102 return factor1*factor4*factor5/factor2/factor3/factor6;
103}
104
105
106G4double G4BetaDecayCorrections::Gamma(const G4double& arg)
107{
108 // Use recursion relation to get argument < 1
109 G4double fac = 1.0;
110 G4double x = arg - 1.;
111 while (x > 1.0) {
112 fac *= x;
113 x -= 1.0;
114 }
115
116 // Calculation of Gamma function with real argument
117 // 0 < arg < 1 using polynomial from Abramowitz and Stegun
118 G4double sum = gc[0];
119 for (G4int i = 1; i < 6; i++) sum = sum*x + gc[i];
120
121 return sum*fac;
122}
123
124
127 const G4double& p_e, const G4double& e_nu)
128{
129 G4double twoPR = 2.*p_e*Rnuc;
130 G4double factor(1.);
131
132 switch (bdt)
133 {
134 case (allowed) :
135 break;
136
137 case (firstForbidden) :
138 {
139 // Parameters for 1st forbidden shape determined from 210Bi data
140 // Not valid for other 1st forbidden nuclei
141 G4double c1 = 0.578;
142 G4double c2 = 28.466;
143 G4double c3 = -0.658;
144
145 G4double w = std::sqrt(1. + p_e*p_e);
146 factor = 1. + c1*w + c2/w + c3*w*w;
147 }
148 break;
149
150 case (uniqueFirstForbidden) :
151 {
152 G4double eta = alphaZ*std::sqrt(1. + p_e*p_e)/p_e;
153 G4double gamma1 = std::sqrt(4. - alphaZ*alphaZ);
154 G4double gamterm1 = Gamma(2.*gamma0+1.)/Gamma(2.*gamma1+1.);
155 G4double term1 = e_nu*e_nu*(1. + gamma0)/6.;
156 G4double term2 = 12.*(2. + gamma1)*p_e*p_e
157 *std::pow(twoPR, 2.*(gamma1-gamma0-1) )
158 *gamterm1*gamterm1
159 *ModSquared(gamma1, eta)/ModSquared(gamma0, eta);
160 factor = term1 + term2;
161 }
162 break;
163
164 case (uniqueSecondForbidden) :
165 {
166 G4double eta = alphaZ*std::sqrt(1. + p_e*p_e)/p_e;
167 G4double gamma1 = std::sqrt(4. - alphaZ*alphaZ);
168 G4double gamma2 = std::sqrt(9. - alphaZ*alphaZ);
169 G4double gamterm0 = Gamma(2.*gamma0+1.);
170 G4double gamterm1 = gamterm0/Gamma(2.*gamma1+1.);
171 G4double gamterm2 = gamterm0/Gamma(2.*gamma2+1.);
172 G4double term1 = e_nu*e_nu*e_nu*e_nu*(1. + gamma0)/60.;
173
174 G4double term2 = 4.*(2. + gamma1)*e_nu*e_nu*p_e*p_e
175 *std::pow(twoPR, 2.*(gamma1-gamma0-1.) )
176 *gamterm1*gamterm1
177 *ModSquared(gamma1, eta)/ModSquared(gamma0, eta);
178
179 G4double term3 = 180.*(3.+gamma2)*p_e*p_e*p_e*p_e
180 *std::pow(twoPR, 2.*(gamma2-gamma0-2) )
181 *gamterm2*gamterm2
182 *ModSquared(gamma2, eta)/ModSquared(gamma0, eta);
183
184 factor = term1 + term2 + term3;
185 }
186 break;
187
188 case (uniqueThirdForbidden) :
189 {
190 G4double eta = alphaZ*std::sqrt(1. + p_e*p_e)/p_e;
191 G4double gamma1 = std::sqrt(4. - alphaZ*alphaZ);
192 G4double gamma2 = std::sqrt(9. - alphaZ*alphaZ);
193 G4double gamma3 = std::sqrt(16. - alphaZ*alphaZ);
194 G4double gamterm0 = Gamma(2.*gamma0+1.);
195 G4double gamterm1 = gamterm0/Gamma(2.*gamma1+1.);
196 G4double gamterm2 = gamterm0/Gamma(2.*gamma2+1.);
197 G4double gamterm3 = gamterm0/Gamma(2.*gamma3+1.);
198
199 G4double term1 = e_nu*e_nu*e_nu*e_nu*e_nu*e_nu*(1. + gamma0)/1260.;
200
201 G4double term2 = 2.*(2. + gamma1)*e_nu*e_nu*e_nu*e_nu*p_e*p_e
202 *std::pow(twoPR, 2.*(gamma1-gamma0-1.) )
203 *gamterm1*gamterm1
204 *ModSquared(gamma1, eta)/ModSquared(gamma0, eta)/5.;
205
206 G4double term3 = 60.*(3.+gamma2)*p_e*p_e*p_e*p_e*e_nu*e_nu
207 *std::pow(twoPR, 2.*(gamma2-gamma0-2.) )
208 *gamterm2*gamterm2
209 *ModSquared(gamma2, eta)/ModSquared(gamma0, eta);
210
211 G4double term4 = 2240.*p_e*p_e*p_e*p_e*p_e*p_e*(4. + gamma3)
212 *std::pow(twoPR, 2.*(gamma3-gamma0-3.) )
213 *gamterm3*gamterm3
214 *ModSquared(gamma3, eta)/ModSquared(gamma0, eta);
215
216 factor = term1 + term2 + term3 + term4;
217 }
218 break;
219
220 default:
221 G4Exception("G4BetaDecayCorrections::ShapeFactor()","HAD_RDM_010",
223 "Transition not yet implemented - using allowed shape");
224 break;
225 }
226 return factor;
227}
228
229
G4BetaDecayType
@ uniqueFirstForbidden
@ uniqueThirdForbidden
@ allowed
@ uniqueSecondForbidden
@ firstForbidden
@ JustWarning
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4BetaDecayCorrections(G4int Z, G4int A)
G4double FermiFunction(const G4double &W)
G4double ShapeFactor(const G4BetaDecayType &, const G4double &p_e, const G4double &e_nu)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41