Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TwistTubsHypeSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// --------------------------------------------------------------------
31// GEANT 4 class source file
32//
33//
34// G4TwistTubsHypeSide.cc
35//
36// Author:
37// 01-Aug-2002 - Kotoyo Hoshina ([email protected])
38//
39// History:
40// 13-Nov-2003 - O.Link ([email protected]), Integration in Geant4
41// from original version in Jupiter-2.5.02 application.
42// --------------------------------------------------------------------
43
47
48//=====================================================================
49//* constructors ------------------------------------------------------
50
52 const G4RotationMatrix &rot,
53 const G4ThreeVector &tlate,
54 const G4int handedness,
55 const G4double kappa,
56 const G4double tanstereo,
57 const G4double r0,
58 const EAxis axis0,
59 const EAxis axis1,
60 G4double axis0min,
61 G4double axis1min,
62 G4double axis0max,
63 G4double axis1max )
64 : G4VTwistSurface(name, rot, tlate, handedness, axis0, axis1,
65 axis0min, axis1min, axis0max, axis1max),
66 fKappa(kappa), fTanStereo(tanstereo),
67 fTan2Stereo(tanstereo*tanstereo), fR0(r0), fR02(r0*r0), fDPhi(twopi)
68{
69 if ( (axis0 == kZAxis) && (axis1 == kPhi) )
70 {
71 G4Exception("G4TwistTubsHypeSide::G4TwistTubsHypeSide()",
72 "GeomSolids0002", FatalErrorInArgument,
73 "Should swap axis0 and axis1!");
74 }
75
76 fInside.gp.set(kInfinity, kInfinity, kInfinity);
77 fInside.inside = kOutside;
78 fIsValidNorm = false;
79
80 SetCorners();
81 SetBoundaries();
82
83}
84
86 G4double EndInnerRadius[2],
87 G4double EndOuterRadius[2],
88 G4double DPhi,
89 G4double EndPhi[2],
90 G4double EndZ[2],
91 G4double InnerRadius,
92 G4double OuterRadius,
93 G4double Kappa,
94 G4double TanInnerStereo,
95 G4double TanOuterStereo,
96 G4int handedness)
97 : G4VTwistSurface(name)
98{
99
100 fHandedness = handedness; // +z = +ve, -z = -ve
101 fAxis[0] = kPhi;
102 fAxis[1] = kZAxis;
103 fAxisMin[0] = kInfinity; // we cannot fix boundary min of Phi,
104 fAxisMax[0] = kInfinity; // because it depends on z.
105 fAxisMin[1] = EndZ[0];
106 fAxisMax[1] = EndZ[1];
107 fKappa = Kappa;
108 fDPhi = DPhi ;
109
110 if (handedness < 0) { // inner hyperbolic surface
111 fTanStereo = TanInnerStereo;
112 fR0 = InnerRadius;
113 } else { // outer hyperbolic surface
114 fTanStereo = TanOuterStereo;
115 fR0 = OuterRadius;
116 }
117 fTan2Stereo = fTanStereo * fTanStereo;
118 fR02 = fR0 * fR0;
119
120 fTrans.set(0, 0, 0);
121 fIsValidNorm = false;
122
123 fInside.gp.set(kInfinity, kInfinity, kInfinity);
124 fInside.inside = kOutside;
125
126 SetCorners(EndInnerRadius, EndOuterRadius, DPhi, EndPhi, EndZ) ;
127
128 SetBoundaries();
129}
130
131//=====================================================================
132//* Fake default constructor ------------------------------------------
133
135 : G4VTwistSurface(a), fKappa(0.), fTanStereo(0.), fTan2Stereo(0.),
136 fR0(0.), fR02(0.), fDPhi(0.)
137{
138}
139
140//=====================================================================
141//* destructor --------------------------------------------------------
142
144{
145}
146
147//=====================================================================
148//* GetNormal ---------------------------------------------------------
149
151 G4bool isGlobal)
152{
153 // GetNormal returns a normal vector at a surface (or very close
154 // to surface) point at tmpxx.
155 // If isGlobal=true, it returns the normal in global coordinate.
156 //
157
158 G4ThreeVector xx;
159 if (isGlobal) {
160 xx = ComputeLocalPoint(tmpxx);
161 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance) {
163 }
164 } else {
165 xx = tmpxx;
166 if (xx == fCurrentNormal.p) {
167 return fCurrentNormal.normal;
168 }
169 }
170
171 fCurrentNormal.p = xx;
172
173 G4ThreeVector normal( xx.x(), xx.y(), -xx.z() * fTan2Stereo);
174 normal *= fHandedness;
175 normal = normal.unit();
176
177 if (isGlobal) {
179 } else {
180 fCurrentNormal.normal = normal;
181 }
182 return fCurrentNormal.normal;
183}
184
185//=====================================================================
186//* Inside() ----------------------------------------------------------
187
189{
190 // Inside returns
191 static const G4double halftol
193
194 if (fInside.gp == gp) {
195 return fInside.inside;
196 }
197 fInside.gp = gp;
198
200
201
202 if (p.mag() < DBL_MIN) {
203 fInside.inside = kOutside;
204 return fInside.inside;
205 }
206
207 G4double rhohype = GetRhoAtPZ(p);
208 G4double distanceToOut = fHandedness * (rhohype - p.getRho());
209 // +ve : inside
210
211 if (distanceToOut < -halftol) {
212
213 fInside.inside = kOutside;
214
215 } else {
216
217 G4int areacode = GetAreaCode(p);
218 if (IsOutside(areacode)) {
219 fInside.inside = kOutside;
220 } else if (IsBoundary(areacode)) {
221 fInside.inside = kSurface;
222 } else if (IsInside(areacode)) {
223 if (distanceToOut <= halftol) {
224 fInside.inside = kSurface;
225 } else {
226 fInside.inside = kInside;
227 }
228 } else {
229 G4cout << "WARNING - G4TwistTubsHypeSide::Inside()" << G4endl
230 << " Invalid option !" << G4endl
231 << " name, areacode, distanceToOut = "
232 << GetName() << ", " << std::hex << areacode << std::dec << ", "
233 << distanceToOut << G4endl;
234 }
235 }
236
237 return fInside.inside;
238}
239
240//=====================================================================
241//* DistanceToSurface -------------------------------------------------
242
244 const G4ThreeVector &gv,
245 G4ThreeVector gxx[],
246 G4double distance[],
247 G4int areacode[],
248 G4bool isvalid[],
249 EValidate validate)
250{
251 //
252 // Decide if and where a line intersects with a hyperbolic
253 // surface (of infinite extent)
254 //
255 // Arguments:
256 // p - (in) Point on trajectory
257 // v - (in) Vector along trajectory
258 // r2 - (in) Square of radius at z = 0
259 // tan2phi - (in) std::tan(stereo)**2
260 // s - (out) Up to two points of intersection, where the
261 // intersection point is p + s*v, and if there are
262 // two intersections, s[0] < s[1]. May be negative.
263 // Returns:
264 // The number of intersections. If 0, the trajectory misses.
265 //
266 //
267 // Equation of a line:
268 //
269 // x = x0 + s*tx y = y0 + s*ty z = z0 + s*tz
270 //
271 // Equation of a hyperbolic surface:
272 //
273 // x**2 + y**2 = r**2 + (z*tanPhi)**2
274 //
275 // Solution is quadratic:
276 //
277 // a*s**2 + b*s + c = 0
278 //
279 // where:
280 //
281 // a = tx**2 + ty**2 - (tz*tanPhi)**2
282 //
283 // b = 2*( x0*tx + y0*ty - z0*tz*tanPhi**2 )
284 //
285 // c = x0**2 + y0**2 - r**2 - (z0*tanPhi)**2
286 //
287
288 fCurStatWithV.ResetfDone(validate, &gp, &gv);
289
290 if (fCurStatWithV.IsDone()) {
291 G4int i;
292 for (i=0; i<fCurStatWithV.GetNXX(); i++) {
293 gxx[i] = fCurStatWithV.GetXX(i);
294 distance[i] = fCurStatWithV.GetDistance(i);
295 areacode[i] = fCurStatWithV.GetAreacode(i);
296 isvalid[i] = fCurStatWithV.IsValid(i);
297 }
298 return fCurStatWithV.GetNXX();
299 } else {
300 // initialize
301 G4int i;
302 for (i=0; i<2; i++) {
303 distance[i] = kInfinity;
304 areacode[i] = sOutside;
305 isvalid[i] = false;
306 gxx[i].set(kInfinity, kInfinity, kInfinity);
307 }
308 }
309
312 G4ThreeVector xx[2];
313
314 //
315 // special case! p is on origin.
316 //
317
318 if (p.mag() == 0) {
319 // p is origin.
320 // unique solution of 2-dimension question in r-z plane
321 // Equations:
322 // r^2 = fR02 + z^2*fTan2Stere0
323 // r = beta*z
324 // where
325 // beta = vrho / vz
326 // Solution (z value of intersection point):
327 // xxz = +- std::sqrt (fR02 / (beta^2 - fTan2Stereo))
328 //
329
330 G4double vz = v.z();
331 G4double absvz = std::fabs(vz);
332 G4double vrho = v.getRho();
333 G4double vslope = vrho/vz;
334 G4double vslope2 = vslope * vslope;
335 if (vrho == 0 || (vrho/absvz) <= (absvz*std::fabs(fTanStereo)/absvz)) {
336 // vz/vrho is bigger than slope of asymptonic line
337 distance[0] = kInfinity;
338 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
339 isvalid[0], 0, validate, &gp, &gv);
340 return 0;
341 }
342
343 if (vz) {
344 G4double xxz = std::sqrt(fR02 / (vslope2 - fTan2Stereo))
345 * (vz / std::fabs(vz)) ;
346 G4double t = xxz / vz;
347 xx[0].set(t*v.x(), t*v.y(), xxz);
348 } else {
349 // p.z = 0 && v.z =0
350 xx[0].set(v.x()*fR0, v.y()*fR0, 0); // v is a unit vector.
351 }
352 distance[0] = xx[0].mag();
353 gxx[0] = ComputeGlobalPoint(xx[0]);
354
355 if (validate == kValidateWithTol) {
356 areacode[0] = GetAreaCode(xx[0]);
357 if (!IsOutside(areacode[0])) {
358 if (distance[0] >= 0) isvalid[0] = true;
359 }
360 } else if (validate == kValidateWithoutTol) {
361 areacode[0] = GetAreaCode(xx[0], false);
362 if (IsInside(areacode[0])) {
363 if (distance[0] >= 0) isvalid[0] = true;
364 }
365 } else { // kDontValidate
366 areacode[0] = sInside;
367 if (distance[0] >= 0) isvalid[0] = true;
368 }
369
370 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
371 isvalid[0], 1, validate, &gp, &gv);
372 return 1;
373 }
374
375 //
376 // special case end.
377 //
378
379 G4double a = v.x()*v.x() + v.y()*v.y() - v.z()*v.z()*fTan2Stereo;
380 G4double b = 2.0 * ( p.x() * v.x() + p.y() * v.y() - p.z() * v.z() * fTan2Stereo );
381 G4double c = p.x()*p.x() + p.y()*p.y() - fR02 - p.z()*p.z()*fTan2Stereo;
382 G4double D = b*b - 4*a*c; //discriminant
383 G4int vout = 0;
384
385 if (std::fabs(a) < DBL_MIN) {
386 if (std::fabs(b) > DBL_MIN) { // single solution
387
388 distance[0] = -c/b;
389 xx[0] = p + distance[0]*v;
390 gxx[0] = ComputeGlobalPoint(xx[0]);
391
392 if (validate == kValidateWithTol) {
393 areacode[0] = GetAreaCode(xx[0]);
394 if (!IsOutside(areacode[0])) {
395 if (distance[0] >= 0) isvalid[0] = true;
396 }
397 } else if (validate == kValidateWithoutTol) {
398 areacode[0] = GetAreaCode(xx[0], false);
399 if (IsInside(areacode[0])) {
400 if (distance[0] >= 0) isvalid[0] = true;
401 }
402 } else { // kDontValidate
403 areacode[0] = sInside;
404 if (distance[0] >= 0) isvalid[0] = true;
405 }
406
407 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
408 isvalid[0], 1, validate, &gp, &gv);
409 vout = 1;
410
411 } else {
412 // if a=b=0 and c != 0, p is origin and v is parallel to asymptotic line.
413 // if a=b=c=0, p is on surface and v is paralell to stereo wire.
414 // return distance = infinity.
415
416 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
417 isvalid[0], 0, validate, &gp, &gv);
418
419 vout = 0;
420 }
421
422 } else if (D > DBL_MIN) { // double solutions
423
424 D = std::sqrt(D);
425 G4double factor = 0.5/a;
426 G4double tmpdist[2] = {kInfinity, kInfinity};
427 G4ThreeVector tmpxx[2] ;
428 G4int tmpareacode[2] = {sOutside, sOutside};
429 G4bool tmpisvalid[2] = {false, false};
430 G4int i;
431
432 for (i=0; i<2; i++) {
433 tmpdist[i] = factor*(-b - D);
434 D = -D;
435 tmpxx[i] = p + tmpdist[i]*v;
436
437 if (validate == kValidateWithTol) {
438 tmpareacode[i] = GetAreaCode(tmpxx[i]);
439 if (!IsOutside(tmpareacode[i])) {
440 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
441 continue;
442 }
443 } else if (validate == kValidateWithoutTol) {
444 tmpareacode[i] = GetAreaCode(tmpxx[i], false);
445 if (IsInside(tmpareacode[i])) {
446 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
447 continue;
448 }
449 } else { // kDontValidate
450 tmpareacode[i] = sInside;
451 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
452 continue;
453 }
454 }
455
456 if (tmpdist[0] <= tmpdist[1]) {
457 distance[0] = tmpdist[0];
458 distance[1] = tmpdist[1];
459 xx[0] = tmpxx[0];
460 xx[1] = tmpxx[1];
461 gxx[0] = ComputeGlobalPoint(tmpxx[0]);
462 gxx[1] = ComputeGlobalPoint(tmpxx[1]);
463 areacode[0] = tmpareacode[0];
464 areacode[1] = tmpareacode[1];
465 isvalid[0] = tmpisvalid[0];
466 isvalid[1] = tmpisvalid[1];
467 } else {
468 distance[0] = tmpdist[1];
469 distance[1] = tmpdist[0];
470 xx[0] = tmpxx[1];
471 xx[1] = tmpxx[0];
472 gxx[0] = ComputeGlobalPoint(tmpxx[1]);
473 gxx[1] = ComputeGlobalPoint(tmpxx[0]);
474 areacode[0] = tmpareacode[1];
475 areacode[1] = tmpareacode[0];
476 isvalid[0] = tmpisvalid[1];
477 isvalid[1] = tmpisvalid[0];
478 }
479
480 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
481 isvalid[0], 2, validate, &gp, &gv);
482 fCurStatWithV.SetCurrentStatus(1, gxx[1], distance[1], areacode[1],
483 isvalid[1], 2, validate, &gp, &gv);
484 vout = 2;
485
486 } else {
487 // if D<0, no solution
488 // if D=0, just grazing the surfaces, return kInfinity
489
490 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
491 isvalid[0], 0, validate, &gp, &gv);
492 vout = 0;
493 }
494 return vout;
495}
496
497
498//=====================================================================
499//* DistanceToSurface -------------------------------------------------
500
502 G4ThreeVector gxx[],
503 G4double distance[],
504 G4int areacode[])
505{
506 // Find the approximate distance of a point of a hyperbolic surface.
507 // The distance must be an underestimate.
508 // It will also be nice (although not necessary) that the estimate is
509 // always finite no matter how close the point is.
510 //
511 // We arranged G4Hype::ApproxDistOutside and G4Hype::ApproxDistInside
512 // for this function. See these discriptions.
513
514 static const G4double halftol
516
518
519 if (fCurStat.IsDone()) {
520 for (G4int i=0; i<fCurStat.GetNXX(); i++) {
521 gxx[i] = fCurStat.GetXX(i);
522 distance[i] = fCurStat.GetDistance(i);
523 areacode[i] = fCurStat.GetAreacode(i);
524 }
525 return fCurStat.GetNXX();
526 } else {
527 // initialize
528 for (G4int i=0; i<2; i++) {
529 distance[i] = kInfinity;
530 areacode[i] = sOutside;
531 gxx[i].set(kInfinity, kInfinity, kInfinity);
532 }
533 }
534
535
537 G4ThreeVector xx;
538
539 //
540 // special case!
541 // If p is on surface, return distance = 0 immediatery .
542 //
543 G4ThreeVector lastgxx[2];
544 for (G4int i=0; i<2; i++) {
545 lastgxx[i] = fCurStatWithV.GetXX(i);
546 }
547
548 if ((gp - lastgxx[0]).mag() < halftol || (gp - lastgxx[1]).mag() < halftol) {
549 // last winner, or last poststep point is on the surface.
550 xx = p;
551 gxx[0] = gp;
552 distance[0] = 0;
553
554 G4bool isvalid = true;
555 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
556 isvalid, 1, kDontValidate, &gp);
557
558 return 1;
559
560 }
561 //
562 // special case end
563 //
564
565 G4double prho = p.getRho();
566 G4double pz = std::fabs(p.z()); // use symmetry
567 G4double r1 = std::sqrt(fR02 + pz * pz * fTan2Stereo);
568
569 G4ThreeVector pabsz(p.x(), p.y(), pz);
570
571 if (prho > r1 + halftol) { // p is outside of Hyperbolic surface
572
573 // First point xx1
574 G4double t = r1 / prho;
575 G4ThreeVector xx1(t * pabsz.x(), t * pabsz.y() , pz);
576
577 // Second point xx2
578 G4double z2 = (prho * fTanStereo + pz) / (1 + fTan2Stereo);
579 G4double r2 = std::sqrt(fR02 + z2 * z2 * fTan2Stereo);
580 t = r2 / prho;
581 G4ThreeVector xx2(t * pabsz.x(), t * pabsz.y() , z2);
582
583 G4double len = (xx2 - xx1).mag();
584 if (len < DBL_MIN) {
585 // xx2 = xx1?? I guess we
586 // must have really bracketed the normal
587 distance[0] = (pabsz - xx1).mag();
588 xx = xx1;
589 } else {
590 distance[0] = DistanceToLine(pabsz, xx1, (xx2 - xx1) , xx);
591 }
592
593 } else if (prho < r1 - halftol) { // p is inside of Hyperbolic surface.
594
595 // First point xx1
596 G4double t;
597 G4ThreeVector xx1;
598 if (prho < DBL_MIN) {
599 xx1.set(r1, 0. , pz);
600 } else {
601 t = r1 / prho;
602 xx1.set(t * pabsz.x(), t * pabsz.y() , pz);
603 }
604
605 // dr, dz is tangential vector of Hyparbolic surface at xx1
606 // dr = r, dz = z*tan2stereo
607 G4double dr = pz * fTan2Stereo;
608 G4double dz = r1;
609 G4double tanbeta = dr / dz;
610 G4double pztanbeta = pz * tanbeta;
611
612 // Second point xx2
613 // xx2 is intersection between x-axis and tangential vector
614 G4double r2 = r1 - pztanbeta;
615 G4ThreeVector xx2;
616 if (prho < DBL_MIN) {
617 xx2.set(r2, 0. , 0.);
618 } else {
619 t = r2 / prho;
620 xx2.set(t * pabsz.x(), t * pabsz.y() , 0.);
621 }
622
623 G4ThreeVector d = xx2 - xx1;
624 distance[0] = DistanceToLine(pabsz, xx1, d, xx);
625
626 } else { // p is on Hyperbolic surface.
627
628 distance[0] = 0;
629 xx.set(p.x(), p.y(), pz);
630
631 }
632
633 if (p.z() < 0) {
634 G4ThreeVector tmpxx(xx.x(), xx.y(), -xx.z());
635 xx = tmpxx;
636 }
637
638 gxx[0] = ComputeGlobalPoint(xx);
639 areacode[0] = sInside;
640 G4bool isvalid = true;
641 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
642 isvalid, 1, kDontValidate, &gp);
643 return 1;
644}
645
646//=====================================================================
647//* GetAreaCode -------------------------------------------------------
648
649G4int G4TwistTubsHypeSide::GetAreaCode(const G4ThreeVector &xx,
650 G4bool withTol)
651{
652 static const G4double ctol = 0.5 * kCarTolerance;
653 G4int areacode = sInside;
654
655 if ((fAxis[0] == kPhi && fAxis[1] == kZAxis)) {
656 //G4int phiaxis = 0;
657 G4int zaxis = 1;
658
659 if (withTol) {
660
661 G4bool isoutside = false;
662 G4int phiareacode = GetAreaCodeInPhi(xx);
663 G4bool isoutsideinphi = IsOutside(phiareacode);
664
665 // test boundary of phiaxis
666
667 if ((phiareacode & sAxisMin) == sAxisMin) {
668
669 areacode |= (sAxis0 & (sAxisPhi | sAxisMin)) | sBoundary;
670 if (isoutsideinphi) isoutside = true;
671
672 } else if ((phiareacode & sAxisMax) == sAxisMax) {
673
674 areacode |= (sAxis0 & (sAxisPhi | sAxisMax)) | sBoundary;
675 if (isoutsideinphi) isoutside = true;
676
677 }
678
679 // test boundary of zaxis
680
681 if (xx.z() < fAxisMin[zaxis] + ctol) {
682
683 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
684 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner.
685 else areacode |= sBoundary;
686
687 if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true;
688
689 } else if (xx.z() > fAxisMax[zaxis] - ctol) {
690
691 areacode |= (sAxis1 & (sAxisZ | sAxisMax));
692 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner.
693 else areacode |= sBoundary;
694
695 if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true;
696 }
697
698 // if isoutside = true, clear sInside bit.
699 // if not on boundary, add boundary information.
700
701 if (isoutside) {
702 G4int tmpareacode = areacode & (~sInside);
703 areacode = tmpareacode;
704 } else if ((areacode & sBoundary) != sBoundary) {
705 areacode |= (sAxis0 & sAxisPhi) | (sAxis1 & sAxisZ);
706 }
707
708 return areacode;
709
710 } else {
711
712 G4int phiareacode = GetAreaCodeInPhi(xx, false);
713
714 // test boundary of z-axis
715
716 if (xx.z() < fAxisMin[zaxis]) {
717
718 areacode |= (sAxis1 & (sAxisZ | sAxisMin)) | sBoundary;
719
720 } else if (xx.z() > fAxisMax[zaxis]) {
721
722 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) | sBoundary;
723
724 }
725
726 // boundary of phi-axis
727
728 if (phiareacode == sAxisMin) {
729
730 areacode |= (sAxis0 & (sAxisPhi | sAxisMin));
731 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner.
732 else areacode |= sBoundary;
733
734 } else if (phiareacode == sAxisMax) {
735
736 areacode |= (sAxis0 & (sAxisPhi | sAxisMax));
737 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner.
738 else areacode |= sBoundary;
739
740 }
741
742 // if not on boundary, add boundary information.
743
744 if ((areacode & sBoundary) != sBoundary) {
745 areacode |= (sAxis0 & sAxisPhi) | (sAxis1 & sAxisZ);
746 }
747 return areacode;
748 }
749 } else {
750 std::ostringstream message;
751 message << "Feature NOT implemented !" << G4endl
752 << " fAxis[0] = " << fAxis[0] << G4endl
753 << " fAxis[1] = " << fAxis[1];
754 G4Exception("G4TwistTubsHypeSide::GetAreaCode()",
755 "GeomSolids0001", FatalException, message);
756 }
757 return areacode;
758}
759
760//=====================================================================
761//* GetAreaCodeInPhi --------------------------------------------------
762
763G4int G4TwistTubsHypeSide::GetAreaCodeInPhi(const G4ThreeVector &xx,
764 G4bool withTol)
765{
766
767 G4ThreeVector lowerlimit; // lower phi-boundary limit at z = xx.z()
768 G4ThreeVector upperlimit; // upper phi-boundary limit at z = xx.z()
769 lowerlimit = GetBoundaryAtPZ(sAxis0 & sAxisMin, xx);
770 upperlimit = GetBoundaryAtPZ(sAxis0 & sAxisMax, xx);
771
772 G4int areacode = sInside;
773 G4bool isoutside = false;
774
775 if (withTol) {
776
777 if (AmIOnLeftSide(xx, lowerlimit) >= 0) { // xx is on lowerlimit
778 areacode |= (sAxisMin | sBoundary);
779 if (AmIOnLeftSide(xx, lowerlimit) > 0) isoutside = true;
780
781 } else if (AmIOnLeftSide(xx, upperlimit) <= 0) { // xx is on upperlimit
782 areacode |= (sAxisMax | sBoundary);
783 if (AmIOnLeftSide(xx, upperlimit) < 0) isoutside = true;
784 }
785
786 // if isoutside = true, clear inside bit.
787
788 if (isoutside) {
789 G4int tmpareacode = areacode & (~sInside);
790 areacode = tmpareacode;
791 }
792
793
794 } else {
795
796 if (AmIOnLeftSide(xx, lowerlimit, false) >= 0) {
797 areacode |= (sAxisMin | sBoundary);
798 } else if (AmIOnLeftSide(xx, upperlimit, false) <= 0) {
799 areacode |= (sAxisMax | sBoundary);
800 }
801 }
802
803 return areacode;
804
805}
806
807//=====================================================================
808//* SetCorners(EndInnerRadius, EndOuterRadius,DPhi,EndPhi,EndZ) -------
809
810void G4TwistTubsHypeSide::SetCorners(
811 G4double EndInnerRadius[2],
812 G4double EndOuterRadius[2],
813 G4double DPhi,
814 G4double endPhi[2],
815 G4double endZ[2]
816 )
817{
818 // Set Corner points in local coodinate.
819
820 if (fAxis[0] == kPhi && fAxis[1] == kZAxis) {
821
822 G4int i;
823 G4double endRad[2];
824 G4double halfdphi = 0.5*DPhi;
825
826 for (i=0; i<2; i++) { // i=0,1 : -ve z, +ve z
827 endRad[i] = (fHandedness == 1 ? EndOuterRadius[i]
828 : EndInnerRadius[i]);
829 }
830
831 G4int zmin = 0 ; // at -ve z
832 G4int zmax = 1 ; // at +ve z
833
834 G4double x, y, z;
835
836 // corner of Axis0min and Axis1min
837 x = endRad[zmin]*std::cos(endPhi[zmin] - halfdphi);
838 y = endRad[zmin]*std::sin(endPhi[zmin] - halfdphi);
839 z = endZ[zmin];
840 SetCorner(sC0Min1Min, x, y, z);
841
842 // corner of Axis0max and Axis1min
843 x = endRad[zmin]*std::cos(endPhi[zmin] + halfdphi);
844 y = endRad[zmin]*std::sin(endPhi[zmin] + halfdphi);
845 z = endZ[zmin];
846 SetCorner(sC0Max1Min, x, y, z);
847
848 // corner of Axis0max and Axis1max
849 x = endRad[zmax]*std::cos(endPhi[zmax] + halfdphi);
850 y = endRad[zmax]*std::sin(endPhi[zmax] + halfdphi);
851 z = endZ[zmax];
852 SetCorner(sC0Max1Max, x, y, z);
853
854 // corner of Axis0min and Axis1max
855 x = endRad[zmax]*std::cos(endPhi[zmax] - halfdphi);
856 y = endRad[zmax]*std::sin(endPhi[zmax] - halfdphi);
857 z = endZ[zmax];
858 SetCorner(sC0Min1Max, x, y, z);
859
860 } else {
861 std::ostringstream message;
862 message << "Feature NOT implemented !" << G4endl
863 << " fAxis[0] = " << fAxis[0] << G4endl
864 << " fAxis[1] = " << fAxis[1];
865 G4Exception("G4TwistTubsHypeSide::SetCorners()",
866 "GeomSolids0001", FatalException, message);
867 }
868}
869
870
871//=====================================================================
872//* SetCorners() ------------------------------------------------------
873
874void G4TwistTubsHypeSide::SetCorners()
875{
876 G4Exception("G4TwistTubsHypeSide::SetCorners()",
877 "GeomSolids0001", FatalException,
878 "Method NOT implemented !");
879}
880
881//=====================================================================
882//* SetBoundaries() ---------------------------------------------------
883
884void G4TwistTubsHypeSide::SetBoundaries()
885{
886 // Set direction-unit vector of phi-boundary-lines in local coodinate.
887 // sAxis0 must be kPhi.
888 // This fanction set lower phi-boundary and upper phi-boundary.
889
890 if (fAxis[0] == kPhi && fAxis[1] == kZAxis) {
891
892 G4ThreeVector direction;
893 // sAxis0 & sAxisMin
895 direction = direction.unit();
896 SetBoundary(sAxis0 & (sAxisPhi | sAxisMin), direction,
898
899 // sAxis0 & sAxisMax
901 direction = direction.unit();
902 SetBoundary(sAxis0 & (sAxisPhi | sAxisMax), direction,
904
905 // sAxis1 & sAxisMin
907 direction = direction.unit();
908 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction,
910
911 // sAxis1 & sAxisMax
913 direction = direction.unit();
914 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction,
916 } else {
917 std::ostringstream message;
918 message << "Feature NOT implemented !" << G4endl
919 << " fAxis[0] = " << fAxis[0] << G4endl
920 << " fAxis[1] = " << fAxis[1];
921 G4Exception("G4TwistTubsHypeSide::SetBoundaries()",
922 "GeomSolids0001", FatalException, message);
923 }
924}
925
926//=====================================================================
927//* GetFacets() -------------------------------------------------------
928
930 G4int faces[][4], G4int iside )
931{
932
933 G4double z ; // the two parameters for the surface equation
934 G4double x,xmin,xmax ;
935
936 G4ThreeVector p ; // a point on the surface, given by (z,u)
937
938 G4int nnode ;
939 G4int nface ;
940
941 // calculate the (n-1)*(k-1) vertices
942
943 G4int i,j ;
944
945 for ( i = 0 ; i<n ; i++ ) {
946
947 z = fAxisMin[1] + i*(fAxisMax[1]-fAxisMin[1])/(n-1) ;
948
949 for ( j = 0 ; j<k ; j++ )
950 {
951 nnode = GetNode(i,j,k,n,iside) ;
952
953 xmin = GetBoundaryMin(z) ;
954 xmax = GetBoundaryMax(z) ;
955
956 if (fHandedness < 0) { // inner hyperbolic surface
957 x = xmin + j*(xmax-xmin)/(k-1) ;
958 } else { // outer hyperbolic surface
959 x = xmax - j*(xmax-xmin)/(k-1) ;
960 }
961
962 p = SurfacePoint(x,z,true) ; // surface point in global coord.system
963
964 xyz[nnode][0] = p.x() ;
965 xyz[nnode][1] = p.y() ;
966 xyz[nnode][2] = p.z() ;
967
968 if ( i<n-1 && j<k-1 ) { // clock wise filling
969
970 nface = GetFace(i,j,k,n,iside) ;
971
972 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,1) * ( GetNode(i ,j ,k,n,iside)+1) ;
973 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,1) * ( GetNode(i+1,j ,k,n,iside)+1) ;
974 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,1) * ( GetNode(i+1,j+1,k,n,iside)+1) ;
975 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,1) * ( GetNode(i ,j+1,k,n,iside)+1) ;
976
977 }
978 }
979 }
980}
@ FatalException
@ FatalErrorInArgument
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
double mag() const
double getRho() const
void set(double x, double y, double z)
G4double GetRadialTolerance() const
static G4GeometryTolerance * GetInstance()
virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal=false)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
virtual G4double GetBoundaryMin(G4double phi)
virtual EInside Inside(const G4ThreeVector &gp)
virtual G4ThreeVector SurfacePoint(G4double, G4double, G4bool isGlobal=false)
G4TwistTubsHypeSide(const G4String &name, const G4RotationMatrix &rot, const G4ThreeVector &tlate, const G4int handedness, const G4double kappa, const G4double tanstereo, const G4double r0, const EAxis axis0=kPhi, const EAxis axis1=kZAxis, G4double axis0min=-kInfinity, G4double axis1min=-kInfinity, G4double axis0max=kInfinity, G4double axis1max=kInfinity)
virtual void GetFacets(G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside)
virtual G4double GetRhoAtPZ(const G4ThreeVector &p, G4bool isglobal=false) const
virtual G4double GetBoundaryMax(G4double phi)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=0)
G4bool IsValid(G4int i) const
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=0)
virtual G4int AmIOnLeftSide(const G4ThreeVector &me, const G4ThreeVector &vec, G4bool withTol=true)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4double DistanceToLine(const G4ThreeVector &p, const G4ThreeVector &x0, const G4ThreeVector &d, G4ThreeVector &xx)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisPhi
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
virtual G4ThreeVector GetBoundaryAtPZ(G4int areacode, const G4ThreeVector &p) const
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
static const G4int sAxisZ
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
virtual G4String GetName() const
CurrentStatus fCurStatWithV
G4bool IsBoundary(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
EAxis
Definition: geomdefs.hh:54
@ kPhi
Definition: geomdefs.hh:54
@ kZAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:58
@ kInside
Definition: geomdefs.hh:58
@ kOutside
Definition: geomdefs.hh:58
@ kSurface
Definition: geomdefs.hh:58
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
#define DBL_MIN
Definition: templates.hh:75